(495) 784-43-37 (495) 784-46-90 (495) 784-42-14

ООО
Поставки металлопроката
и стройматериалов

Стабильность и качество

ИдеиМеталлургияСтроительствоСтройматериалы
Новости компании

Компания СТРОЙИНСТАЛЬ увеличивает поставки металлопроката в страны СНГ уже с 12.04.2011г.

26.08.2011Профкомплект закупил линию продольно-поперечной резки
Компания Профкомплект (Санкт-Петербург) приобрела линию продольно-поперечной резки. Предыдущая подобная линия была утрачена в связи с пожаром в мае т.г. Однако клиенты, которых компания обслуживает уже более восьми лет, как резчики рулонного металлопроката, высказали пожелания о возврате удобной услуги перемотки рулонов, отмотки с резкой, деления на 625 мм штрипс и т. д...
26.08.2011БМК-Калининград: Металлообработка бьет рекорды
Внутренние показатели отдела металлообработки Балтийской металлургической компании постоянно растут, как растет спрос на токарно-фрезерные, сварочные и сверловочные работы. Действительно, обработать имеющийся металл, приспособить его к возникшим индивидуальным потребностям гораздо проще, чем довольствоваться готовыми стандартными решениями...
26.08.2011Брок-Инвест-Сервис открыл офис продаж в Липецке
Брок-Инвест-Сервис в рамках развития регионального направления бизнеса в августе 2011 г. открыл новый офис продаж в Липецке...
26.08.2011УралСибМет приглашает на 2-й Кубок по мини-футболу
3 сентября 2011 года ТПК УралСибМет в Иркутске проведет 2-й ежегодный турнир по мини-футболу на кубок компании...
26.08.2011"Силовые машины" отгрузили вторую партию оборудования для Саяно-Шушенской ГЭС
ОАО "Силовые машины" осуществило отгрузку второй партии крупногабаритного оборудования, предназначенного для восстановления Саяно-Шушенской ГЭС.
Тяжеловесные узлы для гидроагрегатов СШГЭС были погружены на судно класса "река - море" на причале на Свердловской набережной в Санкт-Петербурге...


Тепловые насосы для отопления


Все правда о тепловых насосах

?

Виктор Борисов (victorborisov) wrote, 2016-09-26 13:01:00 Виктор Борисов victorborisov 2016-09-26 13:01:00 Этой осенью наблюдается обострение в сети по поводу тепловых насосов и их применения для отопления загородных домов и дач. В загородном доме, который я построил своими руками, с 2013 года установлен такой тепловой насос. Это полупромышленный кондиционер, способный эффективно работать на обогрев при уличной температуре до -25 градусов по Цельсию. Он является основным и единственным отопительным прибором в одноэтажном загородном доме общей площадью 72 квадратных метра.

За спиной уже 3 года полноценной эксплуатации теплового насоса по его прямому назначению и сейчас я хочу поделиться своими впечатлениями. Я провел расчеты и был шокирован — такого результата никто не ожидал!

2. Коротко напомню предысторию. Четыре года назад был куплен участок 6 соток в садовом товариществе, на котором, я, своими руками, без привлечения наемной рабочей силы, построил современный энергоэффективный загородный дом. Предназначение дома — вторая квартира, расположенная на природе. Круглогодичная, но не постоянная эксплуатация. Требовалась максимальная автономность в совокупности с простой инженерией. В районе расположения СНТ отсутствует магистральный газ и на него рассчитывать не стоит. Остается привозное твердое или жидкое топливо, но все эти системы требуют сложной инфраструктуры, стоимость возведения и содержания которой сопоставимо с прямым отоплением электричеством. Таким образом выбор уже был частично предопределен — электрическое отопление. Но здесь возникает второй, не менее важный момент: ограничение электрических мощностей в садовом товариществе, а также достаточно высокие тарифы на электроэнергию (на тот момент — не «сельский» тариф). По факту на участок выделено 5 квт электрической мощности. Единственный выход в данной ситуации — использовать тепловой насос, который позволит сэкономить на отоплении примерно в 2,5-3 раза, по сравнению с прямой конвертацией электрической энергии в тепловую.Итак, переходим к тепловым насосам. Они различаются по тому, откуда они забирают тепло и по тому, куда его отдают. Важный момент, известный из законов термодинамики (8 класс средней школы) — тепловой насос не производит тепло, он его переносит. Именно поэтому его КОП (коэффициент преобразования энергии) всегда больше 1 (то есть тепловой насос всегда отдает тепла больше, чем потребляет из сети). Классификация тепловых насосов следующая: «вода - вода», «вода - воздух», «воздух - воздух», «воздух - вода». Под «водой» указываемой в формуле слева подразумевается отбор тепла от жидкого циркулирующего теплоносителя проходящего по трубам находящимся в земле или водоеме. Эффективность таких систем практически не зависит от времени года и температуры окружающего воздуха, но они требуют дорогостоящих и трудоемких земляных работ, а также наличие достаточных свободных площадей под укладку грунтового теплообменника (на котором, впоследствии будет плохо что-либо расти летом, ввиду вымораживания грунта). Под «водой» указываемой в формуле справа подразумевается отоплительный контур, находящийся внутри здания. Это может быть как система радиаторов, так и жидкостные теплые полы. Такая система также потребует сложных инженерных работ внутри здания, но при этом имеет и свои плюсы — с помощью такого теплового насоса можно заодно получить горячую воду в доме.Но самым интересной выглядит категория тепловых насосов класса «воздух — воздух». По сути это самые обычные кондиционеры. Во время работы на обогрев они забирают тепло из уличного воздуха и переносят его на воздушный теплобменник находящийся внутри дома. Несмотря на некоторые недостатки (серийные модели не могут работать при температурах окружающего воздуха ниже -30 градусов по Цельсию), они имеют колоссальное преимущество: такой тепловой насос очень легко установить и его стоимость сопоставима с обычным электрическим отоплением с помощью конвекторов или электрокотла.

3. На основании этих рассуждений был выбран канальный полупромышленный кондиционер Mitsubishi Heavy, модель FDUM71VNX. По состоянию на осень 2013 года, комплект состоящий из двух блоков (внешний и внутренний) стоил 120 тысяч рублей.

4. Внешний блок установлен на фасаде с северной стороны дома, там где меньше всего ветра (это важно).

5. Внутренний блок установлен в холле под потолком, от него с помощью гибких шумоизолированных воздуховодов обеспечена подача горячего воздуха во все жилые помещения внутри дома.

6. Т.к. подача воздуха находится под потолком (организовать подачу горячего воздуха около пола в каменном доме решительно невозможно), то очевидно, что забирать воздух нужно на полу. Для этого с помощью специального короба забор воздуха был опущен на пол в коридоре (во всех межкомнатных дверях также установлены переточные решетки в нижней части). Рабочий режим — 900 кубометров воздуха в час, за счет постоянной и стабильной циркуляции совершенно нет разницы по температуре воздуха между полом и потолком в любой части дома. Если быть точным, то разница составляет 1 градус по Цельсию, это даже меньше, чем при использовании настенных конвекторов под окнами (с ними перепад температуры между полом и потолком может достигать 5 градусов).

7. Кроме того, что внутренний блок кондиционера за счет мощной крыльчатки способен прогонять в режиме рециркуляции большие объемы воздуха по дому, не нужно забывать о том, что для людей наобходим свежий воздух в доме. Поэтому система отопления также выполняет роль системы вентиляции. По отдельному воздушному каналу с улицы в дом подается свежий воздух, который при необходимости подогревается (в холодное время года) с помощью автоматики и канального ТЭНа.

8. Раздача горячего воздуха осуществляется через вот такие решетки, расположенные в жилых комнатах. Также стоит обратить внимание на то, что в доме нет ни одной лампы накаливания и используются исключительно светодиоды (запомните этот момент, это важно).

9. Отработанный «грязный» воздух удаляется из дома через вытяжку в санузле и на кухне. Горячая вода готовится в обычном накопительном водонагревателе. Вообще, это достаточно большая статья расходов, т.к. колодезная вода очень холодна (от +4 до +10 градусов по Цельсию в зависимости от времени года) и кто-то может резонно заметить, что можно использовать солнечные коллекторы для нагрева воды. Да, можно, но стоимость вложений в инфраструктуру такова, что за эти деньги можно греть воду напрямую электричеством в течение 10 лет.

10. А это — «ЦУП». Главный и основной пульт управления воздушным тепловым насосом. У него есть различные таймеры и простейшая автоматика, но мы используем только два режима: вентиляция (в теплое время года) и нагрев (в холодное время года). Построенный дом оказался настолько энергоэффективным, что кондиционер в нём ни разу не использовался по прямому назначению — для охлаждения дома в жару. В этом большую роль сыграло и светодиодное освещение (теплоотдача от которого стремится к нулю) и очень качественное утепление (шутка ли, после обустройства газона на крыше нам даже пришлось этим летом использовать тепловой насос для обогрева дома — в дни, когда среднесуточная температура опускалась ниже +17 градусов по Цельсию). В доме круглогодично поддерживается температура не ниже +16 градусов по Цельсию, независимо от наличия в нём людей (когда в доме люди, то температура устанавливается +22 градуса по Цельсию) и никогда не выключается приточная вентиляция (потому, что лень).

11. Счетчик технического учета электроэнергии был установлен осенью 2013 года. То есть ровно 3 года назад. Нетрудно подсчитать, что среднегодовое потребление электрической энергии составляет 7000 квтч (на самом деле сейчас эта цифра немного меньше, т.к. в первый год расход был большим из-за использования осушителей во время отделочных работ).

12. В заводской комплектации кондиционер способен работать на обогрев при температуре окружающего воздуха не ниже -20 градусов по Цельсию. Для работы при более низких температурах требуется доработка (на самом деле она актуальна при эксплуатации даже при температуре -10, если на улице высокая влажность) — установка греющего кабеля в дренажный поддон. Это необходимо для того, чтобы после цикла разморозки внешнего блока вода в жидком состоянии успела покинуть дренажный поддон. Если она не успеет это сделать, то в поддоне будет намерзать лед, который впоследствии выдавит раму с вентилятором, что, вероятно, приведет к обламыванию лопастей на нём (можете посмотреть фотографии обломанных лопастей в интернете, я сам с этим чуть не столкнулся т.к. положил греющий кабель не сразу).

13. Как я уже упоминал выше — в доме везде используется исключительно светодиодное освещение. Это важно, когда речь заходит о кондиционировании помещения. Возьмем стандартную комнату, в которой расположено 2 светильника, по 4 лампы в каждом. Если это лампы накаливания мощностью 50 ватт, то суммарно они потребляют 400 ватт, в то время как светодиодные лампы будут потреблять менее 40 ватт. А вся энергия, как мы знаем из курса физики, в конечном итоге все равно превращается в тепловую. То есть освещение на лампах накаливания это такой неплохой обогреватель средней мощности.

14. Теперь поговорим о том, как работает тепловой насос. Всё, что он делает — переносит тепловую энергию из одного места в другое. Именно по такому принципу работают и холодильники. Они переносят тепло из холодильной камеры в помещение.

Есть такая хорошая загадка: Как изменится температура в комнате, если в ней оставить включенный в розетку холодильник с открытой дверцей? Правильный ответ — температура в комнате будет расти. Для просты понимания это объяснить можно так: комната это замкнутый контур, в него по проводам поступает электричество. Как мы знаем энергия в конечном итоге превращается в тепловую. Именно поэтому температура в комнате и будет расти, ведь в замкнутый контур извне поступает электричество и в нём же остается.

Немного теории. Теплота это форма энергии, которая передается между двумя системами из-за разницы температур. При этом тепловая энергия переходит из места с высокой температурой к месту с более низкой температурой. Это естественный процесс. Перенос тепла может осуществляться за счет теплопроводности, теплового излучения или путём конвекции.Существует три классических агрегатных состояния вещества, преобразование между которыми осуществляется в результате изменения температуры или давления: твердое, жидкое, газообразное.Для изменения агрегатного состояния тело должно либо получить, либо отдать тепловую энергию.• При плавлении (переход из твердого состояния в жидкое) поглощается тепловая энергия.• При испарении (переход из жидкого состояния в газообразное) поглощается тепловая энергия.• При конденсации (переход из газообразного состояния в жидкое) выделяется тепловая энергия.• При кристаллизации (переход из жидкого состояния в твердое) выделяется тепловая энергия.Тепловой насос использует в работе два переходных режима: испарение и конденсацию, то есть оперирует веществом, находящимся либо в жидком, либо в газообразном состоянии.

15. В качестве рабочего тела в контуре теплового насоса используется хладагент R410a. Это фторуглеводород, закипающий (переход из жидкого состояния в газообразное) при очень низкой температуре. А именно, при температуре — 48,5 градусов по Цельсию. То есть, если обычная вода при нормальном атмосферном давлении кипит при температуре +100 градусов по Цельсию, то фреон R410a кипит при температуре почти на 150 градусов ниже. Более того, при сильно отрицательной температуре.

Именно это свойство хладагента используется в тепловом насосе. Путем целеправленного измерения давления и температуры ему можно придать необходимые свойства. Либо это будет испарение при температуре окружающей с поглощением тепла, либо конденсации при температуре окружающей среды с выделением тепла.

16. Вот как выглядит контур циркуляции теплового насоса. Его основные компоненты: компрессор, испаритель, расширительный клапан и конденсатор. Хладагент циркулирует в замкнутом контуре теплового насоса и попеременно меняет свое агрегатное состояние с жидкого на газообразное и обратно. Именно хладагент передает и переносит тепло. Давление в контуре всегда избыточно по сравнению с атмосферным.

Как это работает?Компрессор всасывает холодный газообразный хладагент низкого давления поступающий из испарителя. Компрессор сжимает его под высоким давлением. Температура повышается (тепло от работы компрессора также добавляется к хладагенту). На этом этапе мы получается газообразный хладагент высокого давления и высокой температуры.

В таком виде он поступает в конденсатор, обдуваемый более холодным воздухом. Перегретый хладагент отдает свое тепло воздуху и конденсируется. На этом этапе хладагент находится в жидком состоянии, под высоким давлением и со средней температурой.Далее хладагент поступает в расширительный клапан. В нём происходит резкое снижение давления, вследствие расширения объема, который занимает хладагент. Уменьшение давления приводит к частичному испарению хладагента, что в свою очередь снижает температуру хладагента ниже температуры окружающей среды.В испарителе давление хладагента продолжает снижаться, он еще сильнее испаряется, а необходимое для этого процесса тепло отбирается от более теплого наружного воздуха, который при этом охлаждается. Полностью газообразный хладагент снова поступает в компрессор и цикл замыкается.

17. Попробую еще раз объяснить попроще. Хладагент кипит уже при температуре -48,5 градусов по Цельсию. То есть, условно говоря при любой более высокой температуре окружающей среды он будет иметь избыточное давление и в процессе испарения забирать тепло из окружающей среды (то есть уличного воздуха). Есть хладагенты используемые в низкотемпературных холодильниках, у них температура кипения еще ниже, вплоть до -100 градусов по Цельсию, но его не получится использовать для работы теплового насоса на охлаждение помещения в жару из-за очень высокого давления при высоких температурах окружающей среды. Хладагент R410a это некий баланс между возможностью работы кондиционера как на нагрев, так и охлаждение.

Вот, кстати, хороший документальный фильм снятый в СССР и рассказывающий о том, как устроен тепловой насос. Рекомендую.

18. Любой ли кондиционер можно использовать для работы на обогрев? Нет, не любой. Хотя на фреоне R410a и работают почти все современные кондиционеры, не менее важны и другие характеристики. Во-первых кондиционер должен иметь четырехходовой клапан, позволяющий так сказать переключиться на «реверс», а именно поменять местами конденсатор и испаритель. Во-вторых, обратите внимание, что компрессор (он расположен справа снизу) находится в теплоизолированном кохуже и имеет электрический подогрев картера. Это нужно для того, чтобы всегда поддерживать положительную температуру масла в компрессоре. По факту, при температуре окружающей среды ниже +5 градусов по Цельсию даже в выключенном состоянии кондиционер потребляет 70 ватт электрической энергии. Второй, важнейший момент — кондиционер должен быть инверторным. То есть и компрессор и электромотор крыльчатки должны иметь возможность изменять производительность в процессе работы. Именно это позволяет тепловому насосу эффективно работать на обогрев при наружной температуре ниже -5 градусов по Цельсию.

19. Как мы знаем, на теплообменнике внешнего блока, который является испарителем во время работы на обогрев, происходит интенсивное испарение хладагента с поглощением тепла из окружающей среды. Но в уличном воздухе находятся пары воды в газообразном состоянии, которые конденсируются, а то и кристаллизуются на испарителе из-за резкого снижения температуры (уличный воздух отдает свою теплоту хладагенту). А интенсивное обмерзание теплообменника приведет к снижению эффективности теплоосъема. То есть, по мере снижения температуры окружающей среды необходимо «притормозить» и компрессор и крыльчатку, чтобы обеспечить наиболее эффективный теплосъем на поверхности испарителя.

Идеальный тепловой насос работающий только на обогрев должен иметь площадь поверхности внешнего теплообменника (испарителя) в несколько раз превышающую площадь поверхности внутреннего теплообменника (конденсатора). На практике мы возращаемся к тому самому балансу, что тепловой насос должен уметь работать как на обогрев, так и охлаждение.

20. Слева можно видеть практически полностью покрытый инеем внешний теплообменник, кроме двух секций. В верхней, не замерзшей, секции фреон имеет еще достаточно высокое давление, что не позволяет ему эффективно испаряться с поглощением тепла из окружающей среды, в нижней же секции он уже перегрет и не может больше забирать тепло извне. А фотография справа дает ответ на вопрос почему внешний блок кондиционера был установлен на фасаде, а не спрятан от глаз на плоской кровле. Именно из-за воды, которую нужно отводить от дренажного поддона в холодное время года. Отводить эту воду с кровли было бы значительно сложнее, чем с отмостки.Как я уже писал, во время работы на обогрев при отрицательной температуре на улице испаритель на внешнем блоке обмерзает, на нём кристаллизуется вода из уличного воздуха. Эффективность обмерзшего испарителя заметно снижается, но электроника кондиционера в автоматическом режиме контролирует эффективность теплосъема и периодически переключает тепловой насос в режим разморозки. По сути режим разморозки это прямой режим кондиционирования. То есть из помещения забирается тепло и переносится на внешний, обмерзший теплообменник, что растопить на нём лед. В это время вентилятор внутреннего блока работает на минимальной скорости, а из воздуховодов внутри дома поступает прохладный воздух. Цикл разморозки обычно длится 5 минут и происходит каждые 45-50 минут. Ввиду высокой тепловой инерционности дома, никакого дискомфорта во время разморозки не ощущается.

21. Вот таблица теплопроизводительности данной модели теплового насоса. Напомню, что номинальное потребление энергии составляет чуть более 2 кВт (ток 10А), а теплоотдача колеблется от 4 кВт при -20 градусах на улице, до 8 кВт при уличной температуре +7 градусов. То есть коэффициент конвертации составляет от 2 до 4. Именно во сколько раз тепловой насос позволяет экономить энергию по сравнению с прямым преобразованием электрической энергии в тепловую.

Практика показывает, что средний коэффициент конвертации с учетом потерь в самые холодные зимние месяцы в Московской области составляет 2,5. Но не забывайте про межсезонье и даже лето. А как я уже писал выше, если у вас энергоэффективный, хорошо теплоизолированный дом, без паразитных источников тепла, то даже летом солнце не способно его прогреть до комфортной температуры +22 градуса и в холодние летние дни потребуется также использовать тепловой насос для обогрева. А при уличной температуре более +10 градусов мы получим пятикратную (!) экономию электроэнергии по сравнению с электрическими конвекторами.Кстати, есть еще один интересный момент. Ресурс у кондиционера при работе на обогрев в разы выше, чем при работе на охлаждение.

22. Осенью прошлого года я установил счетчик электрической энергии Smappee, который позволяет вести статистику энергопотребления по месячно и предоставляет более менее удобную визуализацию проведенных измерений.

23. Smappee был установлен ровно год назад, в последних числах сентября 2015 года. Он также пытается показать стоимость электрической энергии, но делает это исходя из заданных вручную тарифов. А с ними есть важный момент — как известно, у нас повышают цены на электроэнергию 2 раза в год. То есть за представленный период измерений тарифы менялись 3 раза. Поэтому не будем обращать внимание на стоимость, а подсчитаем количество потребленной энергии.

На самом деле с визуализацией графиков потребления у Smappee есть проблемы. Например, самый короткий столбец слева это потребление за сентябрь 2015 года (117 квтч), т.к. у разработчиков что-то пошло не так и на экране за год почему-то 11, а не 12 столбцов. Но суммарные цифры потребления подсчитаны безошибочно.

А именно, 1957 квтч за 4 месяца (включая сентябрь) в конце 2015 года и 4623 квтч за весь 2016 год с января по сентябрь включительно. То есть суммарно было израсходовано 6580 квтч на ВСЁ жизнеообеспечение загородного дома, который круглогодично отапливался, независимо от нахождения в нём людей. Напомню, что летом этого года впервые пришлось использовать тепловой насос для обогрева, а на охлаждение летом он не работал ни разу за все 3 года эксплуатации (кроме автоматических циклов разморозки, разумеется). В рублях, по текущим тарифам в Московской области это менее 20 тысяч рублей в год или около 1700 рублей в месяц. Напомню, что в эту сумму входит: отопление, вентиляция, нагрев воды, плита, холодильник, освещение, электроника и техника. То есть это фактически в 2 раза дешевле, чем ежемесячная плата за квартиру в Москве аналогичной площади (разумеется без учета взносов на содержание, а также сборов на капитальный ремонт).

24. А теперь давайте подсчитаем сколько же денег позволил сэкономить тепловой насос в моём случае. Сравнивать будем электрическим отоплением, на примере электрокотла и радиаторов. Считать буду по докризисным ценам, которые были на момент установки теплового насоса осенью 2013 года. Сейчас тепловые насосы подорожали из-за обвала курса рубля, а техника вся импортная (лидеры по производству тепловых насосов — японцы).

Электрическое отопление:

Электрический котел - 50 тыс рублейТрубы, радиаторы, фитинги и т.д. - еще 30 тыс. рублей. Итого материалов на 80 тысяч рублей.

Тепловой насос:

Канальный кондиционер MHI FDUM71VNXVF (внешний и внутренний блок) - 120 тыс. рублей. Воздуховоды, адаптеры, теплоизоляция и т.д. - еще 30 тыс. рублей. Итого материалов на 150 тысяч рублей.Установка своими руками, но в обоих случаях по времени это примерно одинаково. Итого «переплата» за тепловой насос по сравнению с электрокотлом: 70 тысяч рублей. Но это не всё. Воздушное отопление с помощью теплового насоса это заодно кондиционер в теплое время года (то есть кондиционер все равно нужно ставить, так ведь? значит добавим еще минимум 40 тысяч рублей) и вентиляция (обязательна в современных герметичных домах, еще минимум 20 тысяч рублей).

Что имеем? «Переплата» в комплексе составляет всего 10 тысяч рублей. Это еще только на стадии ввода системы отопления в эксплуатацию.

А дальше начинается эксплутация. Как я уже писал выше, в самые холодные зимние месяцы коэффициент преобразования составляет 2,5, а в межсезонье и летом можно принять его равным 3,5-4. Возьмем усредненный годовой СОР равный 3. Напомню, что за год в доме расходуется 6500 квтч электрической энергии. Это суммарное потребление на все электрические приборы. Возьмем для простоты расчетов по минимуму, что тепловой насос потребляет из этой суммы всего лишь половину. То есть 3000 квтч. При этом в среднем за год он отдал 9000 квтч тепловой энергии (6000 квтч «притащил» с улицы).

Переведем перенесенную энергию в рубли, предположив, что 1 квтч электрической энергии стоит 4,5 рубля (усредненный дневной/ночной тариф в Московской области). Получаем 27000 рублей экономии, по сравнению с электрическим отоплением только за первый год эксплуатации. Вспомним, что разница на стадии ввода системы в эксплуатацию составляла всего 10 тысяч рублей. То есть уже за первый год эксплуатации тепловой насос СЭКОНОМИЛ мне 17 тысяч рублей. То есть он окупился в первый же год эксплуатации. При этом напомню, что это не постоянное проживание, при котором экономия была бы еще больше!Но не забываем про кондиционер, который конкретно в моем случае не потребовался ввиду того, что построенный мною дом оказался переутепленным (хотя и используется однослойная стена из газобетона без дополнительного утепления) и он просто не нагревается летом на солнце. То есть скинем 40 тысяч рублей из сметы. Что имеем? ЭКОНОМИТЬ на тепловом насосе в таком случае я стал не с первого года эксплуатации, а со второго. Не велика разница-то. Но если мы возьмем тепловой насос класса «вода-вода» или даже «воздух-вода», то цифры в смете будут совершенно иными. Именно поэтому тепловой насос «воздух-воздух» это лучшее соотношение цена/эффективность на рынке.

25. И напоследок несколько слов про электрические отопительные приборы. Меня замучали вопросами о всяких инфракрасных обогревателях и нано-технологиях не сжигающих кислород. Отвечу коротко и по делу. Любой электрический обогреватель имеет КПД 100%, то есть вся электрическая энергия переходит в тепловую. На самом деле это касается любых электрических приборов, даже электрическая лампочка дает тепло ровно в том количестве, в котором она его получила из розетки. Если же говорить про инфракрасные обогреватели, то их преимущество заключается в том, что они греют предметы, а не воздух. Поэтому самое разумное применение для них — обогрев на открытых верандах в кафе и на автобусных остановках. Там, где есть необходимость передать тепло напрямую предметам/людям, минуя нагрев воздуха. Аналогичная история про сжигание кислорода. Если где-то в рекламном проспекте вы видите эту фразу, знайте — производитель держит покупателя за лоха. Горение это реакция окисления, а кислород это окислитель, то есть он сам себя сжечь не может. То есть это все бред дилетантов, прогулявших уроки физики в школе.

26. Еще одним вариантом экономии энергии при электрическом отоплении (не важно, прямой конвертацией или с помощью теплового насоса) является использование теплоемкости ограждающих конструкций (или же специального теплоаккумулятора) для накопления тепла при использовании дешевого ночного электрического тарифа. Именно с этим я и буду экспериментировать этой зимой. По моим предварительным расчетам (с учетом того, что в ближайший месяц я буду платить по сельскому тарифу на электроэнергию, т.к. строение уже зарегистрировано как жилой дом), даже несмотря на рост тарифов на электроэнергию, в следующем году я заплачу за содержание дома менее 20 тысяч рублей (за всю потребленную электрическую энергию на отопление, нагрев воды, вентиляцию и технику с учетом того, что в доме круглогодично поддерживается температура примерно 18-20 градусов тепла, независимо от того есть ли в нём люди).

Что в итоге? Тепловой насос в виде низкотемпературного кондиционера класса «воздух-воздух» это самый простой и доступный способ экономии на отоплении, что вдвойне может быть актуально при существовании лимита электрических мощностей. Я полностью доволен установленной отопительной системой и не испытываю какого-либо дискомфорта от её эксплуатации. В условиях Московской области использование воздушного теплового насоса полностью себя оправдывает и позволяет окупить инвестиции не позднее, чем через 2-3 года.

Кстати, не забывайте что у меня еще есть Instagram, в котором я публикую ход работ практически в реальном времени — https://www.instagram.com/victorprofessor

Все материалы про строительство загородного дома своими руками в хронологическом порядке можно посмотреть здесь.

Tags: делюсь опытом, строительство, тепловой насос, энергоэффективность
  • Сразу после постройки загородного дома, в далёком 2014 году, я нашёл и купил первый комплект датчиков Wireless Sensor Tags. Это уникальная…

  • Газобетон это не только конструционно-теплоизоляционный материал из которого можно построить энергоэффективный дом, но ещё и отделочный материал. В…

  • Бризерами Тион мы пользуемся 5 лет. Я уже неоднократно писал, что это самое важное устройство, напрямую влияющее на качество жизни в городской…

  • Моему загородному дому уже 7 лет. Решения, которые были использованы при его строительстве, показали свою эффективность, а концепция загородного…

  • Современное энергоэффективное строительство невозможно без использования высокоэффективных вентиляционных систем, которые позволяют сократить…

  • В начале этого года в гости заезжала редакция YouTube канала Open Village. Коротко рассказал о том, какие материалы я использовал при строительстве…

  • Всем известно что вода и воздух — основа жизни на земле. Поэтому очень важно пить чистую воду и дышать чистым свежим воздухом. Про то, как…

  • Пришло время для очередного отчёта о том, как мы эксплуатируем наш энергоэффективный дом площадью 72 м2, который я самостоятельно построил в 2012…

  • Я уже не первый год рассказываю о том, что газобетон — это лучший строительный материал для загородного дома. При этом из газобетона выпускаются не…

victorborisov.livejournal.com

Стоит ли применять тепловой насос для обогрева дома

В рекламных материалах не описывается ни принцип действия таких устройств, ни уровень эффективности для отопления дома. Однако понять, как все работает, и насколько может быть полезной та или иная система, можно из данной статьи.

Насосная отрасль не стоит на месте, и появляются новые инженерные решения, основанные на знакомых всем технологиях. Маркетологи, заинтересованные в получении прибыли и увеличении продаж, зачастую утаивают данные о том или ином изделии, продвигая его как революционное, не имеющее аналогов. Самый яркий пример — тепловые насосы. В рекламных материалах не описывается ни принцип действия таких устройств, ни уровень эффективности для отопления дома. Однако понять, как все работает, и насколько может быть полезной та или иная система, можно из данной статьи.

  Что такое тепловой насос, сфера его применения Техническое определение теплового насоса — устройство для переноса энергии из одной области в другую с одновременным повышением результативности ее работы. Проиллюстрировать такую механику несложно. Представим ведро холодной воды и стакан горячей. Для их нагрева с определенной отметки тепла затрачено одинаковое количество энергии. Однако результативность ее применения — разная. Если одновременно снизить температуру ведра воды на 1 градус, полученной тепловой энергией можно довести жидкость в стакане практически до кипения.

Тепловой насос

Именно по такой механике работает тепловой насос, с помощью которого можно сделать обогрев бассейна или полностью обеспечить отопление загородного дома. Установка переносит тепло из одной области в другую, в общем случае снаружи помещения вовнутрь. Вариантов применения такой техники множество.

  • При определенных показателях мощности теплового насоса обогрев дома становится недорогим и эффективным.
  • Легко сделать ГВС с тепловым насосом, используя бойлеры вторичного нагрева.
  • При определенных усилиях и правильном проектировании доступно создание полностью автономной отопительной системы, питающейся от солнечных батарей.
  • Большинство моделей тепловых насосов — приемлемый вариант для теплого пола, используемого в роли нагревательного контура.

Чтобы выбрать и приобрести подходящую систему нужно, прежде всего, правильно ставить стоящую перед ней задачу. И только после выдвигать требования к мощности и оценивать приемлемость отдельных типов тепловых котлов для удовлетворения всех потребностей.

Общий принцип работы Технологически тепловой насос работает по знакомому всем циклу Карно, серии преобразований состояний вещества. Такие слова могут быть совершенно чужими большинству пользователей. Однако практически каждый из них имеет дома минимум одно устройство, основанное на данном физическом процессе.

Говоря простыми словами, тепловой насос представляет собой холодильник. Любая бытовая модель, где горожане привыкли хранить мясо и напитки — это нагреватель с КПД более 100%. Работает все следующим образом:

  • холодильник отнимает тепло от помещенных в него продуктов и передает его на решетку радиатора, а, следовательно — в пространство помещения;
  • одновременно идет нагрев воздуха компрессором.

В итоге, затрачивая какое-то количество электроэнергии, пользователь получает два источника тепла, один из которых (отнятая у продуктов энергия) полностью бесплатен.

Именно таков принцип работы теплового насоса. Устройство имеет обратную функциональную схему в сравнении с холодильником — в нем полезным и отвечающим за конечную эффективность узлом является теплообменник, решетка радиатора. Работает все следующим образом:

  • контур отбора тепла находится снаружи помещения, в окружении среды стабильной температуры;
  • во время работы теплового насоса температура рабочего тела принудительно снижается естественными физическими процессами ниже показателей окружающей среды;
  • происходит отбор тепла рабочим телом, интенсивность которого зависит от образованной разницы температур;
  • рабочее тело поступает в контур преобразования состояния и теплообменник помещения;
  • происходит отдача энергии воздуху или другой среде;
  • рабочее тело в исходном состоянии подается в начало цикла (контур отбора тепла).

Такая схема отопления имеет ряд достоинств и недостатков. Однако в оптимальных условиях тепловой насос показывает значительную экономию. Для обогрева дома потребуется на 70-80% меньше затрат в сравнении с классическими системами газовых и твердотельных котлов.

Конечная эффективность теплового насоса зависит от множества факторов. Некоторые технологические решения способны решать только ограниченный ряд задач. Другие предполагают сложный монтаж теплового насоса.

Сегодня существует ряд бытовых приборов, владельцы которых и не подозревают, что в них применяются инновационные, революционные идеи отбора тепла окружающей среды. Причем это может происходить даже при отрицательной температуре воздуха за окном. Это кондиционеры с функцией отопления, которая, собственно, и построена на механике теплового насоса. Принципы работы таких устройств класса воздух-воздух будут рассмотрены позже.

Схема отопления частного дома с применением теплового насоса Оптимальная схема применения теплонасоса для отопления дома включает в себя накопительный бак. Упрощенно это выглядит так:

Здесь блоки 1 и 2 — запорная арматура, которая решает задачу регулирования поступающих потоков тепла. Они могут быть ручного перекрытия потока или представлять собой автоматизированные термоголовки. Блок 3 — общий терморегулятор или система датчиков.

Работает отопление по следующему принципу:

  • тепловой насос отбирает тепло окружающей среды и нагревает воду;
  • жидкость поступает либо в теплообменник вторичного нагрева накопительной емкости, либо циркулирует в едином контуре;
  • система отопления строится по классическому принципу, ток воды в ней обеспечивается циркулярным насосом.

Приведенная на рисунке схема — минимальное оснащение дома. Она может быть легко дополнена. В частности, никто не мешает установить две емкости и использовать принцип вторичного нагрева жидкости. Одна из них — бойлер с тепловым насосом (установленный непосредственно на выходе последнего) — используется для горячего водоснабжения. А более объемный бак решает задачу подачи теплоносителя в систему отопления.

Отлично работает вариант отопления дома с теплонасосом, накопительной емкостью и системой теплый пол. В этом случае не нужно нагревать жидкость до высокой температуры. Оптимальный показатель для теплого пола — от 30 до 40 градусов. Схема отопления аналогична уже приведенной, только вместо радиаторов вода поступает на коллекторный узел с собственной регулировкой потока.

Классификация тепловых насосов по характеристике сред Классификация теплонасосов достаточно объемна. Устройства делятся по роду рабочего тела, принципу изменения его физического состояния, использованию устройств преобразования, характеру необходимого для работы энергоносителя. Если учесть, что на рынке представлены модели с разнообразными комбинациями классификационных критериев, становится понятно, что достаточно трудно перечислить все. Однако можно рассмотреть основные принципы группового деления.

От параметров источника тепла и среды-получателя зависит монтаж, конструкция, а также конечные характеристики теплового насоса. Сегодня предлагается несколько типов инженерных решений.

Воздух-воздух Теплонасосы воздух-воздух — самые распространенные устройства. Они компактны и достаточно просты. На механике такого типа работают бытовые кондиционеры с режимом отопления. Принцип действия прост:

  • уличный теплообменник охлаждается ниже температуры воздуха и отбирает тепло;
  • после сжатия поступающего фреона в радиатор его температура сильно возрастает;
  • вентилятор внутри комнаты, обдувая теплообменник, обогревает помещение.

Отбор энергии окружающей среды не обязательно производится внешним теплообменником. Для этой цели воздух может нагнетаться в расположенный в комнате блок. Именно так работают некоторые канальные системы.

Воздух-воздух

Если в кондиционере происходит сжатие и расширение фреона, то в вихревых теплонасосах используется простой воздух. Механика работы аналогична: до поступления во внутренний теплообменник газ сжимается, а отдав энергию — задувается интенсивным потоком в камеру отбора тепла.

Вихревой теплонасос — большая, массивная установка, которая работает эффективно только при условии высокой температуры окружающей среды. Поэтому такие системы устанавливаются в промышленных цехах, они используют как источник тепла выхлопные газы печей или горячий воздух основной системы кондиционирования.

Вода-вода

Теплонасос типа вода-вода работает по тому же принципу, что и другие установки. Отличаются только среды передачи энергии. Оборудование оснащается погружными зондами, чтобы даже в условиях жесткой зимы добраться до горизонта грунтовых вод с положительной температурой.

В зависимости от потребностей отопления, теплонасосные системы вода-вода могут быть совершенно разного размера. К примеру, начиная от нескольких скважин, пробуренных вокруг частного дома, заканчивая расположенными непосредственно в водоносном слое теплообменниками большой площади, которые закладываются на этапе строительства здания.

Теплонасосы вода-вода отличаются большей производительностью и эффективной мощностью отдачи. Причина — в повышенной теплоемкости жидкости. Слой воды, в котором расположен зонд или теплообменник, быстро отдает энергию, а благодаря огромному объему незначительно снижает свои характеристики, способствуя стабильной работе системы. Также оборудование вода-вода отличается повышенным КПД.

Совет! В определенных условиях схема вода-вода может обойтись без промежуточных узлов в виде накопительных баков отопительной сети. Правильно оценивая существующие климатические условия и выбирая мощность установки, в доме устанавливается водонагреватель с тепловым насосом и организуется эффективная система теплый пол.

Вода-воздух, воздух-вода

Комбинированные системы нужно выбирать особенно внимательно. При этом тщательно оцениваются существующие климатические условия. Например, цикл теплового насоса класса вода-воздух имеет хорошую эффективность для отопления в регионах с сильными морозами. Система же воздух-вода в связке с теплым полом и накопительным бойлером вторичного нагрева способна показать максимальные результаты экономии на территориях, где температура воздуха редко падает ниже -5…-10 градусов.

Расплав (рассол)-вода

Теплонасос данного класса — своеобразный универсал. Он может применяться буквально везде. Показатели его полезной тепловой мощности постоянны и стабильны. Принцип работы рассольно-водного устройства основан на отборе тепла, прежде всего, из почвы, имеющей нормальные показатели влажности или заболоченной.

Система отличается простым монтажом: для размещения внешних теплообменников достаточно зарыть их на определенную глубину. Также можно выбрать один из вариантов оборудования с газообразным или жидким рабочим телом.

Расчет теплового насоса класса рассол-вода делается по уровню потребности в энергии для отопления. Методик ее количественного определения предостаточно. Можно произвести максимально четкий расчет, принимая во внимание материал стен дома, конструкции окон, характер почвы, средневзвешенную температуру воздуха и многое другое.

Производители рассольно-водных систем предлагают различные варианты моделей, отличающихся мощностью потребления узла преобразования, конструкцией и габаритами внешних теплообменников, параметрами выходного контура. Выбрать оптимальный теплонасос по заранее сформированному списку требований несложно.

Деление по типу рабочего тела

Современные теплонасосы могут использовать газообразное тело или химический жидкий раствор аммиака в роли транспортера тепла. Пригодность той или иной схемы оценивается по нескольким факторам, особенностям систем.

  1. Установки, использующие фреон, имеют цикл теплового насоса, основанный на процессах сжатия и расширения газа. Они так или иначе построены на компрессорной схеме. Оборудование обладает привлекательными показателями производительности, однако имеет и недостатки. Хотя средневзвешенное потребление системы в момент рабочего цикла стабильно, проводка сильно нагружается. Кроме этого, теплонасосы с газообразным транспортером тепла не будут полезны в регионах, где нет централизованных сетей электричества или источника питания достаточной нагрузочной способности.
  2. Установки испарительного типа, использующие аммиачный раствор, имеют рабочий цикл, основанный на процессе испарения вещества при низких температурах кипения. Сжижение после прохода внешнего теплообменника происходит под действием источника энергии. Это — тепловая горелка. Для нее может применяться практически любое топливо: твердое, бензин, дизель, газ, керосин, в отдельных случаях — метиловый спирт. Поэтому испарительные теплонасосы привлекательны в местах, где нет электричества. Кроме этого, к выбору именно такого оборудования может подтолкнуть дешевизна топлива определенного вида в регионе.

Характер используемого в системе рабочего тела может многое сказать о производительности установки и отдачи мощности. Так, фреонные компрессорные теплонасосы способны на резкий рывок, быстро прогревая помещение. Аммиачные испарительные модели на такие подвиги не способны. Их предпочтительный режим использования — стабильная, постоянная работа с номинальной теплоотдачей.

Преимущества тепловых насосов и целесообразность их установки

Как заявлено в рекламе, главное преимущество тепловых насосов — экономичность отопления. В какой-то мере все работает именно так. Если теплонасос имеет среду отбора энергии, обеспечивающую оптимальные показатели температуры, установка работает эффективно, расходы на отопление снижаются примерно на 70-80%. Однако всегда есть случаи, когда теплонасос может быть нерациональным вложением средств.

Эффективность работы теплового насоса обуславливается следующими технологическими характеристиками:

  • параметр граничного предела снижения температуры рабочим телом;
  • минимальная разница в температурах внешнего обменника и окружающей среды, при которой отбор тепла крайне мал;
  • уровень потребления энергии и отдачи полезной тепловой мощности.

Целесообразность применения теплонасоса зависит от нескольких факторов.

  1. Территории, где такое оборудование не показывает хороших результатов — регионы с морозными зимами и низкими среднесуточными температурами. В этом случае, теплонасос просто не способен отобрать достаточно тепла из окружающей среды, вплотную приближаясь к зоне нулевой эффективности. В первую очередь, это касается систем воздух-воздух.
  2. При росте объемов отапливаемого пространства технологические параметры теплонасоса увеличиваются почти в геометрической прогрессии. Становятся габаритнее теплообменники, размер и количество зондов погружения в воду или землю увеличиваются. В определенной точке стоимость теплонасоса для отопления, необходимые траты на его монтаж и обслуживание, а также оплату потребленной мощности становятся просто нерациональными вложениями. Гораздо дешевле создать классическую газовую схему отопления с котлом.
  3. Чем сложнее система, тем дороже и проблематичнее ее ремонт в случае поломки. Это негативное дополнение к размеру отапливаемой площади и характеристикам климатической зоны.

Совет! В целом, использование теплового насоса в качестве единственного источника тепла для дома может рассматриваться только в ограниченном числе ситуаций. Всегда разумно применять систему комплексного обеспечения. Здесь количество возможных комбинаций ограничено только доступными источниками энергии и финансовыми возможностями владельца.

Классика — это тепловой насос и газовый/твердотопливный котел, работающие в связке. Идея проста: продукты сгорания топлива выводятся по широкой трубе. В ней располагается обменник теплонасоса. В системе отопления и горячего водоснабжения устанавливаются накопительные емкости и бойлер косвенного нагрева. Оборудование (котел и насос) активируется одновременно при падении температуры жидкости в распределительной сети. Работая в паре, они практически полностью утилизируют энергию сгорающего топлива, показывая близкие к максимуму показатели эффективности.

Система с адаптацией к характеристикам окружающей среды построена на термонасосе, вентиляторном блоке, тепловой пушке любого класса. При достаточно высокой температуре воздуха на улице (до -5…-10 градусов Цельсия) теплонасос работает в штатном режиме, обеспечивая достаточную отдачу мощности для отопления. Особенность конструкции системы — расположение его внешнего теплообменника в отдельном вентиляционном канале. При падении температуры на улице ниже оптимальной отметки подаваемый воздух нагревается тепловой пушкой (дизельной, электрической или газовой).

Особо стоит отметить: большинство схем, предусматривающих адаптацию к температуре воздуха или стабилизирующие параметры эксплуатации теплонасоса, применяются к устройствам класса воздух-воздух и воздух-вода. Другие системы, из-за изолированных в земле или воде внешних теплообменников не позволяют создания подобных «тепличных» условий работы.

Основные характеристики и расчет мощности теплового насоса

Общая рациональность установки теплонасоса для отопления дома оцениваются, прежде всего, по финансовым тратам. Сюда входят:

  • цена покупки оборудования;
  • стоимость монтажа, которая может включать земельные работы;
  • траты на периодическое обслуживание;
  • примерная стоимость ликвидации частых неполадок.

Выбор модели по мощности, как было сказано выше, базируется на общей потребности в теплообеспечении. Примерный расчет для одноэтажного дома 10х10 метров (300 кубометров объема) выглядит примерно так:

  • учитывается максимальная отрицательная зимняя температура (-20);
  • определяется разница между комнатой и окружающей средой (20 — -20 = 40);
  • высчитываются теплопотери стен, по справочным данным их материала (для кирпича табличное значение 1, теплопотери — 1х300х40 — 12000 килокалорий в час или 13,5 кВт).

Полученная цифра — показатель минимальной мощности теплового насоса, которого хватит для отопления дома. Для выбора оптимальной модели характеристику нужно увеличить минимум на 50%. Это делается из-за того, что теплонасосу зимой придется работать в неоптимальных условиях, близко к нижней точке нулевой эффективности по температуре окружающей среды. Полученная цифра для рассматриваемого примера — около 20 кВт.

Вторая часть расчета — выбор емкости накопительного бака. Данную часть системы рекомендуется устанавливать, чтобы теплонасос мог работать ограниченное число циклов в сутки. В документации к оборудованию приводятся рекомендации по объему теплоаккумулятора для определенного показателя цикличности. Среднестатистическая цифра — 30 литров на киловатт при 3 запусках, 20 литров — при 5 запусках. Таким образом, для дома в рассматриваемом примере понадобится бак накопителя минимум в 400 литров для пяти циклов работы теплонасоса в сутки.

Заключение

Если в результате анализа климата, доступных источников энергии, характера почв принято решение купить теплонасос для отопления — рекомендуется доверить проектирование системы профессионалам. Оптимальный выбор модели основывается не только на особенностях оборудования и механике его работы. Специалисты учтут теплоотдачу почв, выберут комбинированную схему с хорошей эффективностью, рассчитают лучший вариант проведения земельных работ. Поэтому разработанная профессионалами система отопления с тепловым насосом не заставит столкнуться с неожиданностями и пожалеть о своем выборе.

опубликовано econet.ru  Если у вас возникли вопросы по этой теме, задайте их специалистам и читателям нашего проекта здесь.

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

econet.ru

Тепловой насос для отопления дома: принцип работы, разновидности и использование

В условиях ухудшения экологической обстановки в мире и (что более актуально для рядового потребителя) стремительного роста тарифов на газ и электричество все больше европейцев старается внедрить в свою повседневную жизнь системы, использующие альтернативные источники энергии. Один из вариантов подобных систем – так называемый тепловой насос, посредством которого можно отапливать свое жилище в зимний период и нагревать воду для бытовых нужд, расходуя на это минимум электроэнергии.

В домах наших соотечественников в последние годы тоже все чаще можно встретить это чудо инженерной мысли. Конечно, для россиян проблема высоких цен на традиционные энергоносители пока стоит не так остро, как в Европе, но, во-первых, это лишь до поры до времени, а во-вторых, не хочется отставать от цивилизованного мира…

Итак, тепловой насос… Что это такое? На чем основан принцип его действия? Откуда, куда и как он перекачивает тепло? Давайте разбираться.

Принцип действия тепловых насосов основан на способности вещества (хладагента) поглощать или отдавать тепло при изменении агрегатного состояния. По своей сути такие насосы мало чем отличаются от холодильных установок. (Это странное, на первый взгляд, утверждение нисколько вас не удивит, если вы хоть раз дотрагивались до горячей задней стенки обычного бытового холодильника.)

Схематично тепловой насос может быть представлен в виде системы, состоящей из трех контуров. В первом находится теплоноситель, переносящий энергию от источника низкопотенциального тепла. Во втором контуре циркулирует хладагент (фреон), который периодически то испаряется, отбирая тепло у первого контура, то вновь конденсируется, отдавая его третьему контуру. И, наконец, по третьему контуру «бегает» теплоприемник, в нашем случае – вода, переносящая тепло по системе отопления.

Рабочий цикл теплонасоса в общих словах может быть описан следующим образом. Жидкий хладагент поступает в испаритель, где переходит в газообразное состояние. Необходимая для протекания этого процесса энергия отбирается у теплоносителя, циркулирующего в первом контуре. Далее подогретый на несколько градусов газообразный хладагент всасывается в компрессор, главное назначение которого – сжатие газа (на совершение этой работы, разумеется, расходуется электроэнергия).

Давление газа возрастает в несколько раз, при этом он существенно разогревается: если на входе в компрессор температура хладагента составляет 6-10°C, то на выходе уже около 60°C. На следующей стадии разогретый газ направляется в конденсатор, где отдает полученное тепло системе отопления, сам же при этом конденсируется, т.е. переходит в жидкое состояние. Затем избыточное давление сбрасывается с помощью дроссельного клапана, и цикл начинается заново.

Как видите, устройство теплового насоса не отличается принципиально от устройства холодильной машины. Просто основным назначением холодильных установок является генерирование холода, поэтому там отбор теплоты производится испарителем, а конденсатор лишь сбрасывает эту теплоту в окружающее пространство. В тепловом же насосе картина обратная: конденсатор представляет собой теплообменный аппарат, отдающий теплоту потребителю, а испаритель – это теплообменник, утилизирующий низкопотенциальную теплоту вторичных энергоресурсов.

Другими словами тепловой насос – это «холодильник наоборот». При этом «наоборот» не только устройство, но и результат. Если в случае холодильника тепло, отнимаемое у хранящихся внутри продуктов, выбрасывается впустую, то энергия, вырабатываемая тепловым насосом, приносит реальную пользу – тратится на целенаправленный обогрев дома.

Разновидности тепловых насосов и систем

Тепловая энергия, расходуемая на отопление здания и систему горячего водоснабжения, является результатом преобразования энергии окружающей среды, осуществляемого с помощью теплового насоса. Насос концентрирует эту низкопотенциальную (низкотемпературную) энергию и передает ее системе отопления.

Осталось разобраться, что в данном случае подразумевается под энергией окружающей среды. Большинство тепловых насосов бытового назначения позволяют использовать тепло Солнца и внутреннее тепло Земли, накапливаемые верхними слоями земной коры и водой в течение всего года.

По типу конструкции первого контура теплообменника все тепловые насосы делятся на грунтовые, водяные и воздушные.

Грунтовые тепловые насосы

Грунтовые тепловые насосы получают тепло, необходимое для подогрева хладагента в испарителе, от грунта. Температура последнего на глубине нескольких метров практически не подвержена сезонным колебаниям. По замкнутой системе труб, размещенных в грунте, циркулирует «рассол». Слово «рассол» мы не случайно взяли в кавычки: соли, как этого можно было бы ожидать исходя из названия, он не содержит. На самом деле это антифриз на основе этиленгликоля или пропиленгликоля, реже водного этанола. Трубы теплообменника могут быть уложены в грунте как горизонтальным (горизонтальный коллектор), так и вертикальным (геотермальный зонд) способом.

Трубы горизонтального коллектора укладываются в землю на глубине ниже уровня промерзания грунта в данном регионе (обычно 1.5-2 м). Теплообменная система этого вида занимает достаточно большую площадь. Например, для обеспечения теплом сравнительно небольшого дома площадью 100 м2 потребуется выделить 2-3 сотки земли. Следует принять во внимание, что на территории, занятой коллектором, можно садить лишь те деревья и кустарники, корни которых не уходят в почву слишком глубоко, а располагать здесь какие-либо постройки и вовсе нельзя.

Геотермальный зонд – это теплообменник, трубы которого располагаются вертикально и погружены в грунт на глубину до 100-200 м. Количество устанавливаемых зондов зависит от требуемой мощности установки. Для обогрева дома, уже рассматриваемого нами выше в качестве примера, достаточно будет двух зондов длиной около 80 м, расположенных на расстоянии 5 м друг от друга.

Как видите, для размещения этой системы не требуется больших площадей, вы можете пробурить скважины в любой части вашего участка – там, где вам это удобно. Главный недостаток грунтовых тепловых насосов с геотермальными зондами – высокая стоимость работ по бурению скважин. Однако, невзирая на это, большинство пользователей отдает предпочтение именно этим системам, ведь геотермальные зонды обладают большей эффективностью, чем горизонтальные коллекторы, и имеют при этом меньше ограничений.

Бурение скважины для геотермального зонда.

Водяные тепловые насосы

Водяной тепловой насос «черпает» энергию грунтовых вод, которые прокачивает через свой испаритель. Подобная система отличается повышенной эффективностью и неплохой стабильностью: первая характеристика является результатом высокой теплоотдачи воды, вторая обусловлена постоянством температуры грунтовых вод.

Разумеется, чтобы использовать установку такого типа, требуется, чтобы эти самые грунтовые воды имелись на вашей территории, причем в достаточно большом количестве. Очень желательно, чтобы водоносный слой располагался не глубже 30-40 м. Одновременное выполнение этих двух условий – явление нечастое. Еще одним условием, невыполнение которого может стать препятствием для установки водяного теплонасоса в вашем доме или коттедже, является низкое содержание в грунтовых водах солей железа и прочих примесей.

Использование воды низкого качества приведет к тому, что оборудование быстро выйдет из строя, поскольку теплообменник попросту забьется. Наличие такого количества ограничений является причиной того, что подобные тепловые насосы, несмотря на всю их привлекательность, устанавливают нечасто (около 5% от всех реализованных проектов).

Воздушные тепловые насосы

С точки зрения простоты монтажа воздушные тепловые насосы обладают огромным преимуществом перед своими «собратьями». Для использования окружающего воздуха в качестве источника тепла вам не придется бурить скважины или проводить какие-то другие крупномасштабные грунтовые работы. В результате, если заложить в смету стоимость работ по установке оборудования, воздушный насос обойдется вам значительно дешевле, чем водяной или грунтовый.

Несмотря на столь весомое достоинство, идеальным этот вид климатического оборудования не назовешь, поскольку есть у него и существенный недостаток. Такой насос эффективно работает лишь при температуре окружающего воздуха выше –15°C…–20°C. Падение температуры ниже этой границы, что в зимний период не является редкостью в большинстве регионов нашей страны, ведет к существенному уменьшению коэффициента эффективности воздушного теплонасоса.

Коэффициент эффективности тепловых насосов

Чуть выше мы использовали новый термин – «коэффициент эффективности». Было бы неправильно не пояснить, что это такое, тем более что это важная характеристика тепловых насосов, позволяющая сравнивать насосы разных типов между собой.

Коэффициент эффективности (называемый также коэффициентом трансформации) – это отношение выработанной насосом тепловой энергии к потребленной им электрической. По сути это КПД теплового насоса. В случае водяных теплонасосов этот коэффициент равен 5 вне зависимости от времени года. Это означает, что при потреблении 1 кВт*ч электроэнергии установка вырабатывает 5 кВт*ч тепловой энергии.

У грунтовых насосов величина коэффициента эффективности чуть ниже – от 4 до 4.5. И, наконец, самым маленьким коэффициентом характеризуются воздушные тепловые насосы, при этом их эффективность сильно зависит от температуры окружающего воздуха: при 0°C величина коэффициента равна ~3.5, а при –20°C он уже не превышает 1.5 (при такой низкой эффективности насос попросту не окупится, и имеет смысл подумать о приобретении более дешевого климатического оборудования, например электрического котла).

Некоторые менеджеры, рекламируя реализуемые ими тепловые насосы, уверяют потенциальных клиентов в том, что данное оборудование имеет КПД 400-500%. Разумеется, ни о каком нарушении законов термодинамики речи не идет. Просто в данном случае расчеты намеренно делаются неправильно: не учитываются источники энергии, отличные от потребляемого электричества, – воздух, вода или грунт, нагретые Солнцем и геотермальными процессами. Когда при расчете КПД учитывают только электроэнергию и забывают про источник низкопотенциального тепла, как раз и получается величина больше 100%.

Применение тепловых насосов в условиях российского климата

Познакомившись с приведенными выше описаниями различных типов тепловых насосов, вы без труда сами сможете ответить на вопрос, какой насос больше всего подходит для эксплуатации в условиях российского климата.

Воздушные тепловые насосы пригодны для применения лишь в ограниченном числе регионов нашей страны – там, где температура воздуха зимой почти не опускается ниже нулевой отметки. Разумеется, жителям Сибири, Дальнего Востока, севера европейской части России о воздушных тепловых насосах не стоит и размышлять.

Для применения водяных тепловых насосов есть много ограничений. О некоторых из них мы уже рассказывали, осталось упомянуть еще об одном. Более половины территории нашей страны находится в зоне вечной мерзлоты. Если даже какому-нибудь жителю Восточной Сибири или севера Дальнего Востока «повезло», и на его участке есть грунтовые воды, залегающие не слишком глубоко, то все равно эти грунтовые воды находятся в виде льда, а значит, не пригодны для использования в системе отопления.

Таким образом, большинству наших соотечественников приходится рассчитывать на единственный, беспроигрышный, вариант – грунтовый тепловой насос. При этом в условиях российского климата больше подойдет насос не с горизонтальным коллектором, а с геотермальным зондом, позволяющим достигнуть глубины, где температура грунта более стабильна.

Применение теплового насоса для охлаждения

Огромным достоинством тепловых насосов является то, что они способны не только отапливать дом, но и при необходимости охлаждать его. Наше короткое российское лето порою бывает очень жарким, и, когда ваше жилище буквально раскаляется, предложение превратить обогреватель в кондиционер будет очень кстати.

Техническое решение этого вопроса может быть интегрировано в тепловой насос изначально, на стадии изготовления, и практически у всех производителей имеются линейки насосов, умеющих кондиционировать помещение (режим Natural Cooling). Если ваш тепловой насос не обладает такими способностями, не все еще потеряно – работать на охлаждение может и обычный насос. Необходимое для этого дополнительное оборудование в виде гидравлической развязки будет смонтировано вне насоса. Оба варианта не требуют больших капиталовложений.

Нести генерируемый тепловым насосом холод непосредственно в помещение можно разными способами. Эта функция может быть возложена на холодные панели на стенах или потолке, охлаждающий теплый пол, радиаторы отопления с хорошим обдувом или же фанкойл – устройство, в чей корпус встроен обдуваемый вентилятором пластинчатый теплообменник.

Применение теплового насоса для горячего водоснабжения

Любой тепловой насос способен не только обогревать ваше жилище, но и круглогодично снабжать вас горячей водой. Однако следует учитывать, что эта система является низкотемпературной, а значит, температура воды в бойлере не превысит 45-55°C. Из этого следует, что объем бойлера должен быть больше, чем при использовании стандартной системы отопления, в противном случае вам и вашим домочадцам придется жить в условиях жесткой экономии горячей воды.

Данный факт следует учитывать при выделении площади для котельной, т. е. еще на стадии проектирования дома. Также при выборе бойлера нужно принимать во внимание, что это должно быть специальное оборудование, рассчитанное на работу с теплонасосными установками. Главное отличие такого бойлера от обычного – увеличенная площадь теплообменника, необходимая для максимально эффективной передачи тепла от теплового насоса.

Тепловые насосы со встроенным ТЭНом

Нередко производители встраивают в свои тепловые насосы дополнительные электрические нагреватели. Встроенный ТЭН позволяет в случае необходимости перейти на альтернативный с точки зрения теплового насоса источник энергии – электричество. Для чего это нужно? В каких случаях возникает потребность задействовать ТЭН?

Подбор теплового насоса для отопления дома осуществляется с учетом различных параметров, в том числе и климатических особенностей региона. При этом считается нецелесообразным устанавливать насос с избыточной мощностью. Дело в том, что экстремально холодные дни случаются не так уж и часто, по крайней мере, в центрально-европейской части России. Практика показывает, что более экономичным вариантом будет «добрать» в эти морозные периоды необходимую мощность электричеством, чем изначально устанавливать более мощный насос. Наличие ТЭНа исключает необходимость делать систему более мощной, чем это требуется большую часть отопительного сезона.

Для владельцев водяных и грунтовых тепловых насосов встроенный ТЭН – скорее излишество, чем необходимость. Совсем иначе выглядит ситуация с воздушными теплонасосами. При температуре воздуха –20°C и ниже такой насос, если и не отключится, будет малоэффективен. И пусть холодных дней и ночей в году не очень много, совсем не хочется в один прекрасный момент остаться в стремительно вымерзающем доме. Наличие дублирующего теплогенератора в данном случае никак не назовешь роскошью.

Воздушный тепловой насос.

Советы и рекомендации

Тепловой насос – оборудование технически сложное и достаточно дорогое, поэтому подходить к его выбору следует с большой ответственностью. Чтобы не быть голословными, приведем несколько вполне конкретным рекомендаций.

1. Никогда не приступайте к выбору теплового насоса без предварительного проведения расчетов и создания проекта. Отсутствие проекта может стать причиной фатальных ошибок, исправить которые можно будет лишь с помощью огромных дополнительных финансовых вложений.

2. Доверить проектирование, монтаж и сервисное обслуживание теплового насоса и системы отопления следует только профессионалам. Как убедиться в том, что в данной компании работают профессионалы? В первую очередь, по наличию всей необходимой документации, портфолио реализованных объектов, сертификатов от поставщиков оборудования. Очень желательно, чтобы весь комплекс необходимых услуг предоставляла одна компания, которая в данном случае будет нести полную ответственность за реализацию проекта.

3. Советуем вам отдать предпочтение тепловому насосу европейского производства. Пусть вас не смущает тот факт, что он дороже китайского или российского оборудования. При включении в смету стоимости работ по монтажу, запуску и отладке всей системы отопления разница в цене насосов будет практически незаметна. Но зато, имея в своем распоряжении «европейца», вы будете уверены в его надежности, поскольку высокая цена насоса – это лишь результат использования при его создании современных технологий и высококачественных материалов.

srbu.ru

Статьи по теме

Ситуация такова, что самым популярным на данный момент способом отапливать жилище является использование котлов отопления – газовых, твердотопливных, дизельных и намного реже – электрических. А вот такие простые и в тоже время высокотехнологичные системы, как тепловые насосы, не получили повсеместного распространения, и очень зря. Для тех, кто любит и умеет просчитывать все наперед, их преимущества очевидны. Тепловые насосы для отопления не сжигают невосполнимых запасов природных ресурсов, что крайне важно не только с точки зрения охраны окружающей среды, но и позволяет экономить на энергоносителях, так как они дорожают с каждым годом. К тому же, с помощью тепловых насосов можно не только отапливать помещение, но и подогревать горячую воду для хозяйственных нужд, и кондиционировать помещение в летний зной.

Принцип действия теплового насоса

Остановимся чуть подробнее на принципе действия теплового насоса. Вспомните, как работает холодильник. Тепло помещенных в него продуктов выкачивается и выбрасывается на радиатор, расположенный на задней стенке. В этом легко убедиться, дотронувшись до него. Примерно такой же принцип у бытовых кондиционеров: они выкачивают тепло из помещения и выбрасывают его на радиатор, расположенный на наружной стене здания.

В основу работы теплового насоса, холодильника и кондиционера положен цикл Карно.

  1. Теплоноситель, двигаясь по источнику низкотемпературного тепла, например, грунту, нагревается на несколько градусов.
  2. Затем он поступает в теплообменник, называемый испаритель. В испарителе теплоноситель отдает накопленное тепло хладагенту. Хладагент – это специальная жидкость, которая превращается в пар при низкой температуре.
  3. Приняв на себя температуру с теплоносителя, нагретый хладагент превращается в пар и поступает в компрессор. В компрессоре происходит сжатие хладагента, т.е. повышение его давления, за счет чего повышается и его температура.
  4. Горячий сжатый хладагент поступает в другой теплообменник, называемый конденсатор. Здесь хладагент отдает свое тепло другому теплоносителю, который предусмотрен в системе отопления дома (вода, антифриз, воздух). При этом хладагент охлаждается и снова превращается в жидкость.
  5. Далее хладагент поступает в испаритель, где нагревается от новой порции нагретого теплоносителя, и цикл повторяется.

Для обеспечения работы теплового насоса необходимо электричество. Но это все равно намного выгоднее, чем использовать только электрообогреватель. Так как электрокотел или электрообогреватель тратит ровно столько же электроэнергии, сколько и выдает тепла. Например, если на обогревателе написана мощность 2 кВт, то он тратит 2 кВт в час и выдает 2 кВт тепла. А тепловой насос выдает тепла в 3 – 7 раз больше, чем тратит электроэнергии. Например, используется 5,5 кВт/час на работу компрессора и насоса, а тепла получается 17 кВт/час. Именно такой высокий КПД и является основным достоинством теплового насоса.

Преимущества и недостатки системы отопления «тепловой насос»

Вокруг тепловых насосов ходит много легенд и заблуждений, несмотря на то, что это не такое уж новаторское и высокотехнологичное изобретение. С помощью тепловых насосов отапливаются все «теплые» штаты в США, практически вся Европа и Япония, где технология отработана практически до идеала и уже давно. Кстати, не стоит думать, что подобное оборудование является чисто иностранной технологией и пришло к нам совсем недавно. Ведь еще в СССР такие агрегаты использовались на экспериментальных объектах. Примером тому служит санаторий «Дружба» в городе Ялта. Помимо футуристической архитектуры, напоминающей «избушку на курьих ножках», этот санаторий славен еще и тем, что еще с  80-х годов 20 века в нем используются тепловые насосы для отопления промышленные. Источником тепла является близлежащее море, а сама насосная станция не только обогревает все помещения санатория, но и обеспечивает горячей водой, греет воду в бассейне и охлаждает в знойный период. Так давайте же попытаемся развеять мифы и определить, имеет ли смысл отапливать жилище таким способом.

Преимущества систем отопления с тепловым насосом:

  • Экономия на энергоносителе. В связи с растущими ценами на газ и дизтопливо очень актуальное преимущество. В графе «ежемесячные расходы» будет значиться только электроэнергия, которой как мы уже писали необходимо намного меньше, чем реально производится тепла. При покупке агрегата необходимо обратить внимание на такой параметр, как коэффициент трансформации тепла «ϕ» (может называться еще коэффициент преобразования тепла, коэффициент трансформации мощности или температур). Он показывает отношение количества тепла на выходе к затрачиваемой энергии. Например, если ϕ=4, то при расходе 1 кВт/час мы получим 4 кВт/час тепловой энергии.
  • Экономия на техобслуживании. Тепловой насос не требует к себе никакого особенного отношения. Расходы на его обслуживание минимальны.
  • Можно устанавливать в любой местности. Источниками низкотемпературного тепла для работы теплового насоса могут служить грунт, вода или воздух. Где бы Вы ни строили дом, даже в скалистой местности, всегда найдется возможность найти «пищу» для агрегата. В местности, удаленной о газовой магистрали, это одна из самых оптимальных систем отопления. И даже в регионах без линий электропередач можно установить бензиновый или дизельный движок для обеспечения работы компрессора.
  • Нет необходимости следить за работой насоса, добавлять топливо, как в случае с твердотопливным или дизельным котлом. Вся система отопления с тепловым насосом автоматизирована.
  • Можно уехать на длительный срок и не бояться, что система замерзнет. При этом можно сэкономить, установив насос на обеспечение в жилом помещении температуры +10 °С.
  • Безопасность для окружающей среды. Для сравнения при использовании традиционных котлов, сжигающих топливо, всегда образуются различные окислы  CO, СO2, NOх, SO2 , PbO2, как следствие вокруг дома на почве оседают фосфорная, азотистая, серная кислоты и бензойные соединения. При работе теплового насоса не выбрасывается ничего. А используемые в системе хладагенты абсолютно безопасны.
  • Сюда же можно отметить сохранение невосполнимых природных ресурсов планеты.
  • Безопасность для человека и имущества. В тепловом насосе ничего не нагревается до такой температуры, чтобы вызвать перегрев или взрыв. К тому же, в нем попросту нечему взрываться. Так что его можно отнести к полностью пожаробезопасным агрегатам.
  • Тепловые насосы успешно работают даже при температуре окружающей среды -15 °С. Так что если кому-то кажется, что такой системой можно обогревать дом только в регионах с теплыми зимами до +5 °С, то они ошибаются.
  • Реверсивность теплового насоса. Неоспоримым преимуществом является универсальность установки, с помощью которой можно и отапливать зимой, и охлаждать летом. В жаркие дни тепловой насос забирает тепло из помещения и направляет его в грунт на хранение, откуда снова возьмет зимой. Обратите внимание, что реверсной способностью обладают не все тепловые насосы, а только некоторые модели.
  • Долговечность. При должном уходе тепловые насосы системы отопления живут от 25 до 50 лет без капитального ремонта, и только раз в 15 – 20 лет потребуется заменить компрессор.

Недостатки систем отопления с тепловым насосом:

  • Большие первоначальные капиталовложения. Помимо того, что на тепловые насосы для отопления цены довольно высоки (от 3000 до 10000 у.е.), так еще дополнительно на обустройство геотермальной системы потребуется затратить не меньше, чем на сам насос. Исключением является воздушный тепловой насос, не требующий дополнительных работ. Окупится тепловой насос не скоро (лет через 5 – 10). Так что ответ на вопрос, использовать или не использовать тепловой насос для отопления, скорее зависит от предпочтений хозяина, его финансовых возможностей и условий строительства. Например, в регионе, где подведение газовой магистрали и подключение к ней стоит столько же, сколько и тепловой насос, имеет смысл отдать предпочтение последнему.

  • В регионах, где температура зимой опускается ниже -15 °С, необходимо использовать дополнительный источник тепла. Это называется бивалентная система отопления, в которой тепловой насос обеспечивает тепло, пока на улице до -20 °С, а когда он не справляется, подключается например, электрообогреватель или газовый котел, или теплогенератор.

  • Наиболее целесообразно использовать тепловой насос в системах с низкотемпературным теплоносителем, таких как система «теплый пол» (+35 °С) и фанкойлы (+35 - +45 °С). Фанкойлы представляют собой вентиляторный конвектор, в котором происходит передача тепла/холода от воды воздуху. Для обустройства такой системы в старом доме потребуется полная перепланировка и перестройка, что повлечет дополнительные затраты. При строительстве нового дома это не является недостатком.
  • Экологичность тепловых насосов, берущих тепло из воды и грунта, несколько относительна. Дело в том, что в процессе работы пространство вокруг труб с теплоносителем охлаждается, а это нарушает устоявшуюся экосистему. Ведь даже в глубине грунта живут анаэробные микроорганизмы, обеспечивающие жизнедеятельность более сложных систем. С другой стороны – по сравнению с добычей газа или нефти ущерб от теплового насоса минимален.

Оцените все «за» и «против» для принятия правильного решения.

Источники тепла для работы теплового насоса

Тепловые насосы берут тепло из тех природных источников, которые накапливают солнечную радиацию в течение теплого периода. В зависимости от источника тепла различаются и тепловые насосы.

Грунт

Грунт – самый стабильный источник тепла, которое накапливается за сезон. На глубине 5 – 7 м температура грунта практически всегда постоянна и равна примерно +5 – +8 °С, а на глубине 10 м – всегда постоянна +10 °С. Способов сбора тепла с грунта два.

Горизонтальный грунтовый коллектор представляет собой уложенную горизонтально трубу, по которой циркулирует теплоноситель. Глубина расположения горизонтального коллектора высчитывается индивидуально в зависимости от условий, иногда это 1,5 – 1,7 м – глубина промерзания грунта, иногда ниже – 2 – 3 м для обеспечения большей стабильности температуры и меньшей разницы, а иногда всего 1 – 1,2 м – здесь грунт начинает быстрее прогреваться весной. Бывают случаи, когда обустраивают двухслойный горизонтальный коллектор.

Трубы горизонтального коллектора могут иметь различный диаметр 25 мм, 32 мм и 40 мм. Форма их раскладки тоже может быть разной – змейка, петля, зигзаг, различные спирали. Расстояние между трубами в змейке должно быть не менее 0,6 м, и обычно составляет 0,8 – 1 м.

Удельный теплосъем с каждого погонного метра трубы зависит от структуры грунта:

  • Песок сухой – 10 Вт/м;
  • Глина сухая – 20 Вт/м;
  • Глина более влажная – 25 Вт/м;
  • Глина с очень большим содержанием воды – 35 Вт/м.

Для отопления дома площадью 100 м2 при условии, что грунт представляет собой влажную глину, понадобится 400 м2 площади участка под коллектор. Это довольно много – 4 – 5 соток. А с учетом того, что на данном участке не должно быть никаких строений и допускается только газон и клумбы с однолетними цветами, то не каждый может себе позволить обустроить горизонтальный коллектор.

По трубам коллектора течет специальная жидкость, ее еще называют «рассол» или антифриз, например, 30% раствор этиленгликоля или пропиленгликоля. «Рассол» собирает на себя тепло грунта и направляется к тепловому насосу, где передает его хладагенту. Остывший «рассол» снова течет в грунтовый коллектор.

Вертикальный грунтовый зонд представляет собой систему труб, заглубленных на 50 – 150 м. Это может быть всего одна U-образная труба, опущенная на большую глубину 80 – 100 м и залитая бетонным раствором. А может быть система U-образных труб, опущенных на 20 м, чтобы собрать энергию с большей площади. Выполнение бурильных работ на глубину 100 – 150 м не только дорого стоит, но и требует получения специального разрешения, именно поэтому часто идут на хитрость и обустраивают несколько зондов небольшой глубины. Расстояние между такими зондами делают 5 – 7 м.

Удельный теплосъем с вертикального коллектора также зависит от породы:

  • Осадочные породы сухие – 20 Вт/м;
  • Осадочные породы, насыщенные водой, и каменистая почва – 50 Вт/м;
  • Каменистая почва с высоким коэффициентом теплопроводности – 70 Вт/м;
  • Подземные (грнутовые) воды – 80 Вт/м.

Площадь под вертикальный коллектор необходима совсем маленькая, но стоимость их обустройства выше, чем у горизонтального коллектора. Достоинством вертикального коллектора также является более стабильная температура и больший теплосъем.

Вода

Использовать воду в качестве источника тепла можно по-разному.

Коллектор на дне открытого незамерзающего водоема – реки, озера, моря – представляет собой трубы с «рассолом», притопленные с помощью груза. За счет высокой температуры теплоносителя этот способ получается самым выгодным и экономичным. Обустроить водный коллектор могут только те, от кого водоем находится не дальше 50 м, иначе теряется эффективность установки. Как Вы понимаете, такие условия есть не у всех. Но не использовать тепловые насосы жителям побережья просто недальновидно и глупо.

Коллектор в канализационных стоках или сбросовой воде после технических установок можно использовать для отопления домов и даже многоэтажек и промышленных предприятий в черте города, а также для приготовления горячей воды. Что с успехом делается в некоторых городах нашей Родины.

Скважинную или грунтовую воду используют реже, чем другие коллекторы. Такая система подразумевает строительство двух скважин, из одной забирается вода, которая передает свое тепло хладагенту в тепловом насосе, а во вторую сбрасывается остывшая вода. Вместо скважины может быть фильтрационный колодец. В любом случае сбросовая скважина должна находиться на расстоянии 15 – 20 м от первой, да еще и ниже по течению (подземные воды тоже имеют свое течение). Данная система довольно сложна в эксплуатации, так как за качеством поступаемой воды необходимо следить – фильтровать ее, и защищать детали теплового насоса (испаритель) от коррозии и загрязнения.

Воздух

Самую простую конструкцию имеет система отопления с воздушным тепловым насосом. Никакого дополнительного коллектора не нужно. Воздух из окружающей среды напрямую поступает к испарителю, где передает свое тепло хладагенту, а тот в свою очередь передает тепло теплоносителю внутри дома. Это может быть воздух для фанкойлов или вода для теплого пола и радиатора.

Затраты на установку воздушного теплового насоса самые минимальные, но зато производительность установки очень зависит от температуры воздуха. В регионах с теплыми зимами (до +5 – 0 °С) это один из самых экономичных источников тепла. А вот если температура воздуха опускается ниже -15 °С производительность падает настолько, что не имеет смысла использовать насос, а выгоднее включить обычный электрообогреватель или котел.

На воздушные тепловые насосы для отопления отзывы весьма противоречивы. Все зависит от региона их использования. Их выгодно использовать в регионах с теплыми зимами, например, в Сочи, где даже не понадобится дублирующий источник тепла на случай сильных морозов. Также можно устанавливать воздушные тепловые насосы в регионах, где относительно сухой воздух и температура зимой до -15 °С. А вот во влажном и холодном климате такие установки страдают от обледенения и обмерзания. Налипающие на вентиляторе сосульки не дают нормально работать всей системе.

Отопление тепловым насосом: стоимость системы и расходы на эксплуатацию

Мощность теплового насоса подбирается в зависимости от тех функций, которые на него будут возложены. Если только отопление, то расчеты можно произвести в специальном калькуляторе, учитывающем тепловые потери здания. Кстати, наилучшие показатели работы теплового насоса при тепловых потерях здания не более 80 – 100 Вт/м2. Для простоты примем, что для отопления дома в 100 м2 с потолками высотой 3 м и теплопотерями 60 Вт/м2 необходим насос мощностью 10 кВт. Для подогрева воды придется взять агрегат с запасом по мощности – 12 или 16 кВт.

Стоимость теплового насоса зависит не только от мощности, но и от надежности и запросов производителя. Например, агрегат мощностью 16 кВт российского производства обойдется в 7000 у.е., а иностранный насос RFM 17 мощностью 17 кВт стоит порядка 13200 у.е. со всем сопутствующим оборудованием, кроме коллектора.

Следующей строкой расходов будет обустройство коллектора. Она тоже зависит от мощности установки. Например, для дома 100 м2, в котором везде установлены теплые полы (100 м2) или радиаторы отопления 80 м2, а также для подогрева воды до +40 °С объемом 150 л/час потребуется выполнить бурение скважин под коллекторы. Такой вертикальный коллектор обойдется в 13000 у.е.

Коллектор на дне водоема обойдется чуть дешевле. При таких же условиях он будет стоить 11000 у.е. Но лучше стоимость монтажа геотермальной системы уточнять в специализирующихся компаниях, она может очень сильно отличаться. Например, обустройство горизонтального коллектора для насоса мощность 17 кВт обойдется всего в 2500 у.е. А для воздушного теплового насоса коллектор не нужен вовсе.

Итого, стоимость теплового насоса 8000 у.е. в среднем, обустройство коллектора 6000 у.е. в среднем.

В ежемесячную стоимость отопления тепловым насосом входят только расходы на электроэнергию. Рассчитать их можно так – на насосе должна быть указана потребляемая мощность. Например, для вышеупомянутого насоса мощностью 17 кВт потребляемая мощность составляет 5,5 кВт/час. Всего отопительная система работает 225 дней в году, т.е. 5400 часов. С учетом того, что тепловой насос и компрессор в нем работают циклически, то расход электроэнергии необходимо уменьшить вдвое. За отопительный сезон будет потрачено 5400ч*5,5кВт/ч/2=14850 кВт.

Умножаем количество затраченных кВт на стоимость энергоносителя в Вашем регионе. Например, 0,05 у.е. за 1 кВт/час. Итого за год будет потрачено 742,5 у.е. За каждый месяц, в котором работал тепловой насос на отопление, приходится по 100 у.е. расходов на электроэнергию. Если же поделить расходы на 12 месяцев, то в месяц получится 60 у.е.

Обратите внимание, что чем меньше потребляемая мощность теплового насоса, тем меньше ежемесячные расходы. Например, есть насосы 17 кВт, которые за год потребляют всего  10000 кВт (расходы 500 у.е.). Также немаловажно, что производительность теплового насоса тем больше, чем меньше разница температур между источником тепла и теплоносителем в системе отопления. Именно поэтому говорят, что выгоднее устанавливать теплый пол и фанкойлы. Хотя стандартные радиаторы отопления с высокотемпературным теплоносителем (+65 – +95 °С) тоже можно устанавливать, но с дополнительным аккумулятором тепла, например, бойлером косвенного нагрева. Для донагрева воды в ГВС также используется бойлер.

Тепловые насосы выгодны при использовании в бивалентных системах. В дополнение к насосу можно установить солнечный коллектор, который сможет полностью обеспечивать насос электроэнергией летом, когда тот будет работать на охлаждение. Для зимней подстраховки можно добавить теплогенератор, который будет догревать воду для ГВС и высокотемпературных радиаторов.

strport.ru


Смотрите также