(495) 784-43-37 (495) 784-46-90 (495) 784-42-14

ООО СтройИнСталь
Поставки металлопроката
и стройматериалов

Стабильность и качество

ИдеиМеталлургияСтроительствоСтройматериалы
Новости компании

Компания СТРОЙИНСТАЛЬ увеличивает поставки металлопроката в страны СНГ уже с 12.04.2011г.

26.08.2020Профкомплект закупил линию продольно-поперечной резки
Компания Профкомплект (Санкт-Петербург) приобрела линию продольно-поперечной резки. Предыдущая подобная линия была утрачена в связи с пожаром в мае т.г. Однако клиенты, которых компания обслуживает уже более восьми лет, как резчики рулонного металлопроката, высказали пожелания о возврате удобной услуги перемотки рулонов, отмотки с резкой, деления на 625 мм штрипс и т. д...
26.08.2020БМК-Калининград: Металлообработка бьет рекорды
Внутренние показатели отдела металлообработки Балтийской металлургической компании постоянно растут, как растет спрос на токарно-фрезерные, сварочные и сверловочные работы. Действительно, обработать имеющийся металл, приспособить его к возникшим индивидуальным потребностям гораздо проще, чем довольствоваться готовыми стандартными решениями...
26.08.2020Брок-Инвест-Сервис открыл офис продаж в Липецке
Брок-Инвест-Сервис в рамках развития регионального направления бизнеса в августе 2011 г. открыл новый офис продаж в Липецке...
26.08.2020УралСибМет приглашает на 2-й Кубок по мини-футболу
3 сентября 2011 года ТПК УралСибМет в Иркутске проведет 2-й ежегодный турнир по мини-футболу на кубок компании...
26.08.2020"Силовые машины" отгрузили вторую партию оборудования для Саяно-Шушенской ГЭС
ОАО "Силовые машины" осуществило отгрузку второй партии крупногабаритного оборудования, предназначенного для восстановления Саяно-Шушенской ГЭС.
Тяжеловесные узлы для гидроагрегатов СШГЭС были погружены на судно класса "река - море" на причале на Свердловской набережной в Санкт-Петербурге...


Схема стабилизатора тока для светодиодов на 12 вольт


Cтабилизатор напряжения 12 вольт для светодиодов в авто своими руками

Светодиодная подсветка все глубже внедряется в нашу жизнь. Капризные лампочки выходят из строя и красота сразу меркнет.  И все потому, что светодиоды не могут работать просто от включения в электросеть. Они обязательно подключаются через стабилизаторы (драйверы). Последние препятствуют перепадам напряжения, выходу из строя компонентов, перегреву и т. п. Об этом и о том, как собрать простую схему своими руками, и пойдёт речь в статье.

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме LM317. Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Устройство позволяет сохранить равномерное свечение и полностью избавить лампочки от моргания.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Схема подключения на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Заключение

Идеальный вариант подключения светодиодов – через стабилизатор тока. Устройство уравновешивает колебания сети, с его использованием уже не будут страшны броски тока. При этом необходимо соблюдать требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть.

Аппарат должен обеспечивать максимальную надежность, устойчивость и стабильность, желательно на долгие годы. Стоимость собранных устройств зависит от того, где все необходимые детали будут покупаться.

На видео — самодельный стабилизатор напряжения для светодиодов.

самодельный стабилизатор напряжения для LED / светодиодов

(5 оценок, среднее: 4,60 из 5)

Стабилизатор питания для светодиодов 12В — Chevrolet Cruze Hatchback, 1.6 л., 2012 года на DRIVE2

К изучению данной темы подстегнул перегоревший светодиод (кукурузина) в габаритах за 250рублей. Установив на машину данную хрень, столкнулся с тем, что те довольно быстро вышли из строя из-за некачественного питания.

Преамбула

Автомобильная бортовая электросеть — довольно «грязная» среда в плане всяческих помех, просадок и выбросов напряжения. Тут импульсные помехи до ста и более вольт амплитуды при работе генератора, «гуляющее» напряжение, в зависимости от состояния аккумулятора и оборотов двигателя, сильные просадки при работе стартера. Плюс привнесенные помехи от некачественных потребителей внутри самого авто, статические наводки от движущихся частей ходовой и внешних источников, типа трамвайных линий и ЛЭП, и т. д. Если штатные электронные узлы автомобиля, как правило, имеют хорошую защиту и фильтрацию от подобного рода проблем, то менее важные электроцепи, такие например, как цепи освещения или прикуривателя, практически от них не защищены. Это следует учитывать при собственноручной модификации автомашины. Набирающие сейчас популярность дневные ходовые огни и светодиодное освещение, используют в качестве светоилучающих элементов светодиоды (LED — light emitting diode). С электротехнической точки зрения, светодиод это очень требовательный к источнику питания потребитель. Для работы в номинальном режиме, а следовательно и для сохранения заявленного срока службы и светосилы, светодиодам требуется питание постоянным, строго дозированным током, отсутствие импульсных помех, особенно обратной, по отношению к рабочей, полярности. Результат невыполнения данных условий вы наверняка видели на любой оживленной улице, глядя на авто с копеечными китайскими «кластерами» — часть светодиодов не горит, другая мерцает в такт генератору или едва тлеет. Печальное зрелище. Причина в том, что в таких кластерах используются в лучшем случае токоограничительные резисторы и диоды для исключения выбросов обратной полярности и защиты от переполюсовки, при этом никакой фильтрации и стабилизации не предусмотрено. От такой простейшей схемы есть толк только при питании стабилизированным и отфильтрованным напряжением (но даже в этом случае не учитывается температурный режим светодиодов). Таким образом, вся «грязь» из автомобильной бортсети, попадает прямиком на нежные кристаллы светодиодов, вызывая их преждевременную деградацию и разрушение. Очевидно, что для избежания этого, следует питать светодиоды через фильтр-стабилизатор. В идеале это должен быть стабилизатор тока, но для питания фабрично изготовленных осветителей, изначально рассчитанных на питание от 12 вольт, подойдет и стабилизатор напряжения.

Собственно сама смысловая нагрузка: (осторожно, многабукаф)

Итак, наше ТЗ состоит в следующем: имея на входе напряжение бортовой сети автомобиля со всеми его бросками, просадками и помехами, получить на выходе стабильные 12 вольт с током нагрузки порядка 0,3-0,4 ампера.Здесь мы сталкиваемся с первой трудностью — напряжение бортсети в разных ситуациях может быть как выше, так и ниже 12 вольт. Усредненно примем диапазон изменения входного напряжения как 8-16 вольт. Соответственно, схеме стабилизатора в различных ситуациях придется работать как в повышающем, так и в понижающем режиме. Следовательно, сразу можно отбросить такой простейший вариант, как применение параметрического стабилизатора (отечественная МС КР12ЕН или зарубежная LM7812), поскольку данные микросхемы работают только на понижение, подвержены нагреву в работе, и требуют превышения входного напряжения как минимум на пару вольт над выходным. Очевидно, что лучшим выбором будет применение импульсного преобразователя напряжения, причем способного работать в повышающе-понижающем режиме. Для построения данного преобразователя, воспользуемся топологией SEPIC (single-ended primary inductor converter, преобразователь с несимметрично нагруженной первичной индуктивностью), а в качестве управляющей микросхемы, применим дешевую и широко распространенную MC3x063, имеющую массу аналогов.

Более подробное описание архитектуры SEPIC и принципы действия базирующихся на ней преобразователей, можно найти в интернете, просто введя в поисковике строку «sepic converter». Эта тема достаточно хорошо разжевана, в том числе есть масса статей на русском языке, поэтому подробно останавливаться на этом не будем. Нам же сейчас более важен тот факт, что sepic-переобразователь позволяет получать стабильное выходное напряжение при входном напряжении как выше, так и ниже выходного. Отличная статья с описанием методики расчета параметров такого преобразователя и даже онлайн-калькулятором, находится здесь. По сути рассматриваемая в статье схема, является переработанным под автомобильную специфику решением, имеющимся на том же сайте.

Следует сразу отметить, что поскольку схема содержит несинхронный элемент — диод шоттки, а управляющая микросхема имеет относительно невысокую рабочую частоту, ее нагрузочная способность весьма невелика. По сути 1-1,5 ампера является разумным пределом тока нагрузки, поскольку с его ростом, растут также пиковые токи через ключ, диод и катушки (которые в среднем втрое больше номинального тока). Конечно, все это можно решить, применяя более мощные транзистор и диод, используя внешний теплоотвод и катушки, намотанные толстым проводом, но габариты подобного изделия, КПД и тепловые потери при этом получатся совершенно неприемлемыми. Для питания мощных потребителей, вроде ноутбука или автомобильного компьютера, лучше применять иные схемотехнические решения, например схемы синхронных преобразователей на МС LTC3780 или БП с трансформаторной развязкой. В нашем же случае, рассмотренная ниже схема вполне подойдет.Вторая проблема — защита от помех. Ее решить относительно просто. На входе должен стоять хороший LC-фильтр для гашения различных гармоник периодических помех и сглаживания бросков тока. Для защиты от импульсных помех, применим супрессор или TVS-диод, на худой конец сойдет и двуханодный стабилитрон, хотя толку от него в этом качестве почти никакого.Далее представлены две принципиальные схемы, на одной из которых изображен преобразователь напряжения, а на другой — преобразователь тока. Соответственно, первый выдает постоянное напряжение при изменении тока нагрузки в некоторых пределах, что подходит для питания готовых осветителей, приобретаемых в магазине, поскольку те уже рассчитаны на напряжение 12 вольт. Второй же выдает постоянный ток при изменении напряжения в некоторых пределах, в данном случае схема посчитана для тока 20мА — стандартного тока большинства широко распространенных светодиодов. Это позволяет подключить цепочку из десятка последовательно соединенных светодиодов прямо к стабилизатору, что может пригодиться, например, если вы сделали самодельное светодиодное освещение типа «ресниц» или «ангельских глазок» в фары.

Конечно же, никто не мешает пересчитать номиналы элементов схем под свои запросы.

Краткое описание назначения элементов схемы. Так как обе схемы почти одинаковы, то номера элементов буду давать по первой.Входной фильтр собран на конденсаторах С7-С9, выполняющих сглаживающие и блокировочные функции, супрессора VDR1, «обрезающем» ВЧ-помехи и дросселе L2, выполняющем в данной схеме двойное назначение как сглаживателя бросков тока, так и накопителя энергии. Вместо супрессора можно, и даже более желательно, применить TVS-диод, но так как такие диоды довольно редко встречаются в розничной продаже, по крайней мере в Уфе, то сойдет и первый вариант. В крайнем случае, если не удается найти ни того, ни другого, можно ограничиться бюджетным вариантом: двумя стабилитронами, включенными встречно Однако это будет самым худшим решением в плане быстродействия и надежности защиты. Диод VD3 служит для защиты от переполюсовки.В качестве управляющей микросхемы используется NCP3063 с соответствующей обвязкой. Кстати, если вместо нее планируется использование аналогов типа MC3x063 и прочих, у которых восьмой вывод задействован, нужно просто соединить его накоротко с седьмым. Обвязка состоит из следующих элементов: С6 — фильтр по питанию МС; R3 — ограничение максимального тока через встроенный в МС ключ, в принципе можно заменить перемычкой, но наличие этого резистора может спасти микруху от перегорания если какой либо из внешних транзисторов пробъется, так что пусть лучше будет; C5 — частотозадающий конденсатор; R4-R5 — делитель контура обратной связи, формулу расчета делителя см. в датшите на МС; VD2, R2, VT2 — драйвер полевого транзистора VT1, обеспечивающий форсированный заряд-разряд затвора. При наличии высокого уровня на 2-м выводе МС, затвор VT1 быстро заряжается через диод, а при низком уровне также быстро сливается на землю через открывающийся транзистор VT2. Как вариант, драйвер можно реализовать на комплементарной паре npn и pnp транзисторов, например марки BC817-BC819, как это было описано в ранней статье про сверлилку плат. Кроме того, если большие выходные токи не планируются и ограничены 100 мА или менее, можно вовсе обойтись без внешнего ключа и драйвера, используя непосредственно внутренний ключ МС.Сам преобразователь состоит из двух катушек L1-L2, ключа VT1, проходного конденсатора С3 и диода VD1. Цепочка R1-C4 является снаббером для гашения паразитных колебаний при переключении транзистора. Практика показывает, что и без него схема работает отлично, я просто не стал заморачиваться, и перенес его с чужой схемы. С3 ставить только керамику, VD1 с пиковым током не менее тройного тока нагрузки.C1-C2 формируют выходной фильтр, самовосстанавливающийся предохранитель F1 защищает схему от перегрузки в случае короткого замыкания выхода на массу. Об этом следует упомянуть особо: представленная схема стабилизатора очень «боится» перегрузок и коротких замыканий. С большой долей вероятности даже непродолжительное КЗ приведет к перегреву и выгоранию ключа, а возможно также и диода. Поэтому предохранитель в выходной цепи обязателен! В частности, представленная схема стабилизатора напряжения может без вреда для себя выдавать ток до 400 мА. Эту величину можно увеличить, применив более мощный транзистор и диод, однако приведенную ниже плату придется переразвести под другой корпус транзистора, поскольку используемый здесь полевик в корпусе SOT23 имеет невысокую рассеиваемую мощность, что является платой за миниатюрность. «Землю» данной схемы допускается присоединять к массе автомобиля в одной точке, а «земли» потребителей можно цеплять на массу, в любом месте кузова.Отличие схемы стабилизатора тока от стабилизатора напряжения заключается в по-иному организованной цепи обратной связи. Здесь сигнал ОС формируется падением напряжения на шунте R1, и через компенсационную цепочку R4-C7 поступает на вход компаратора МС. Величину сопротивления шунта для получения требуемого тока можно вычислить по формуле Rш=1,25/Iвых, а минимальную рассеиваемую шунтом мощность по формуле Pш=1,25*Iвых. Стабилитрон VD1 служит для сбережения нагрузки от возможных скачков напряжения.Следует также особо отметить, что в отличие от варианта со стабилизацией напряжения, минусовой вывод нагрузки не допускается «сажать на массу», он должен быть обязательно включен через «минус» стабилизатора. Иначе схема работать не будет.Если имеется необходимость диммирования (т. е. изменения яркости свечения светодиодов или полного их гашения), то на 5-й вывод МС можно подавать постоянное, либо широтно-импульсно-модулированное напряжение величиной от 1.25 до 40 вольт. Подав постоянное напряжение, мы полностью погасим подключенные светодиоды, а подводя ШИМ-сигнал, получим изменение яркости пропорционально коэффициенту заполнения. Простейший ШИМ-генератор с регулируемой скважностью можно собрать, например на 555 таймере или микроконтроллере. Рекомендуемая частота ШИМ порядка 200 Гц — при этом человеческий глаз уже не различает мерцание, а индуктивности еще не издают ВЧ-свист.

Ниже представлен рисунок платы, собранной для товарища. Стабилизатор напряжения на 12 вольт для питания светодиодных габаритных ламп суммарной мощностью не более 400 мА. При разводке платы я постарался найти компромиссное решение по критериям цена-мощность-габариты, поэтому на плате присутствуют как традиционные выводные детали, так и компоненты для поверхностного монтажа. За то готовое изделие получилось размером с одноразовую зажигалку, а общая стоимость всей входящей в комплект рассыпухи вышла на полторы сотни рублей.

Возможность диммирования не заложена, так как нам оно без надобности. Готовое изделие имеет габариты порядка 70 на 20 мм, высота 25 мм (из-за высокого электролита, но его при желании можно заменить на низкопрофильный или положить на бок). Входные и выходные контактные площадки имеют стандартные размеры для установки винтовых клеммников, облегчающих подключение-отключение проводов. Три крепежных отверстия под винты М3 позволяют закрепить плату в корпус или удобное для подводки место. Внимание! Подложка, на которую крепится плата должна быть непроводящей, иначе все закоротит! Перед установкой в автомобиль, плату желательно покрыть защитным лаком в несколько слоев, чтобы минимизировать влияние на схему перепадов температуры и влажности.

Так готовое изделие выглядит в реальности:

Проверяем под нагрузкой и при входном напряжении 4,5 вольта

Есть некоторые отличия от рисунка платы, приведенного выше — ранняя версия. Можно было бы сделать еще компактнее и тоньше, используя только детали для поверхностного монтажа, но цена сразу ощутимо возросла бы — танталловые конденсаторы весьма дороги по сравнению с электролитами аналогичной емкости.При попытке воспроизвести изделие у людей, не имеющих опыта пайки SMD компонентов могут возникнуть некоторые трудности, поэтому если будет интерес к данной теме, могу сделать разводку платы под микруху в DIP корпусе и традиционные выводные детали. Габариты конечно увеличатся, за то паять будет просто.

Схема, плата в Spring Layot и спецификации в архиве по ссылке или по этой: Гугл-Диск.

За огромную проделаную работу спасыба Косте, ака Meta_Kot

Цена вопроса: 150 ₽ Пробег: 15000 км

Page 2

К изучению данной темы подстегнул перегоревший светодиод (кукурузина) в габаритах за 250рублей. Установив на машину данную хрень, столкнулся с тем, что те довольно быстро вышли из строя из-за некачественного питания.

Преамбула

Автомобильная бортовая электросеть — довольно «грязная» среда в плане всяческих помех, просадок и выбросов напряжения. Тут импульсные помехи до ста и более вольт амплитуды при работе генератора, «гуляющее» напряжение, в зависимости от состояния аккумулятора и оборотов двигателя, сильные просадки при работе стартера. Плюс привнесенные помехи от некачественных потребителей внутри самого авто, статические наводки от движущихся частей ходовой и внешних источников, типа трамвайных линий и ЛЭП, и т. д. Если штатные электронные узлы автомобиля, как правило, имеют хорошую защиту и фильтрацию от подобного рода проблем, то менее важные электроцепи, такие например, как цепи освещения или прикуривателя, практически от них не защищены. Это следует учитывать при собственноручной модификации автомашины. Набирающие сейчас популярность дневные ходовые огни и светодиодное освещение, используют в качестве светоилучающих элементов светодиоды (LED — light emitting diode). С электротехнической точки зрения, светодиод это очень требовательный к источнику питания потребитель. Для работы в номинальном режиме, а следовательно и для сохранения заявленного срока службы и светосилы, светодиодам требуется питание постоянным, строго дозированным током, отсутствие импульсных помех, особенно обратной, по отношению к рабочей, полярности. Результат невыполнения данных условий вы наверняка видели на любой оживленной улице, глядя на авто с копеечными китайскими «кластерами» — часть светодиодов не горит, другая мерцает в такт генератору или едва тлеет. Печальное зрелище. Причина в том, что в таких кластерах используются в лучшем случае токоограничительные резисторы и диоды для исключения выбросов обратной полярности и защиты от переполюсовки, при этом никакой фильтрации и стабилизации не предусмотрено. От такой простейшей схемы есть толк только при питании стабилизированным и отфильтрованным напряжением (но даже в этом случае не учитывается температурный режим светодиодов). Таким образом, вся «грязь» из автомобильной бортсети, попадает прямиком на нежные кристаллы светодиодов, вызывая их преждевременную деградацию и разрушение. Очевидно, что для избежания этого, следует питать светодиоды через фильтр-стабилизатор. В идеале это должен быть стабилизатор тока, но для питания фабрично изготовленных осветителей, изначально рассчитанных на питание от 12 вольт, подойдет и стабилизатор напряжения.

Собственно сама смысловая нагрузка: (осторожно, многабукаф)

Итак, наше ТЗ состоит в следующем: имея на входе напряжение бортовой сети автомобиля со всеми его бросками, просадками и помехами, получить на выходе стабильные 12 вольт с током нагрузки порядка 0,3-0,4 ампера.Здесь мы сталкиваемся с первой трудностью — напряжение бортсети в разных ситуациях может быть как выше, так и ниже 12 вольт. Усредненно примем диапазон изменения входного напряжения как 8-16 вольт. Соответственно, схеме стабилизатора в различных ситуациях придется работать как в повышающем, так и в понижающем режиме. Следовательно, сразу можно отбросить такой простейший вариант, как применение параметрического стабилизатора (отечественная МС КР12ЕН или зарубежная LM7812), поскольку данные микросхемы работают только на понижение, подвержены нагреву в работе, и требуют превышения входного напряжения как минимум на пару вольт над выходным. Очевидно, что лучшим выбором будет применение импульсного преобразователя напряжения, причем способного работать в повышающе-понижающем режиме. Для построения данного преобразователя, воспользуемся топологией SEPIC (single-ended primary inductor converter, преобразователь с несимметрично нагруженной первичной индуктивностью), а в качестве управляющей микросхемы, применим дешевую и широко распространенную MC3x063, имеющую массу аналогов.

Более подробное описание архитектуры SEPIC и принципы действия базирующихся на ней преобразователей, можно найти в интернете, просто введя в поисковике строку «sepic converter». Эта тема достаточно хорошо разжевана, в том числе есть масса статей на русском языке, поэтому подробно останавливаться на этом не будем. Нам же сейчас более важен тот факт, что sepic-переобразователь позволяет получать стабильное выходное напряжение при входном напряжении как выше, так и ниже выходного. Отличная статья с описанием методики расчета параметров такого преобразователя и даже онлайн-калькулятором, находится здесь. По сути рассматриваемая в статье схема, является переработанным под автомобильную специфику решением, имеющимся на том же сайте.

Следует сразу отметить, что поскольку схема содержит несинхронный элемент — диод шоттки, а управляющая микросхема имеет относительно невысокую рабочую частоту, ее нагрузочная способность весьма невелика. По сути 1-1,5 ампера является разумным пределом тока нагрузки, поскольку с его ростом, растут также пиковые токи через ключ, диод и катушки (которые в среднем втрое больше номинального тока). Конечно, все это можно решить, применяя более мощные транзистор и диод, используя внешний теплоотвод и катушки, намотанные толстым проводом, но габариты подобного изделия, КПД и тепловые потери при этом получатся совершенно неприемлемыми. Для питания мощных потребителей, вроде ноутбука или автомобильного компьютера, лучше применять иные схемотехнические решения, например схемы синхронных преобразователей на МС LTC3780 или БП с трансформаторной развязкой. В нашем же случае, рассмотренная ниже схема вполне подойдет.Вторая проблема — защита от помех. Ее решить относительно просто. На входе должен стоять хороший LC-фильтр для гашения различных гармоник периодических помех и сглаживания бросков тока. Для защиты от импульсных помех, применим супрессор или TVS-диод, на худой конец сойдет и двуханодный стабилитрон, хотя толку от него в этом качестве почти никакого.Далее представлены две принципиальные схемы, на одной из которых изображен преобразователь напряжения, а на другой — преобразователь тока. Соответственно, первый выдает постоянное напряжение при изменении тока нагрузки в некоторых пределах, что подходит для питания готовых осветителей, приобретаемых в магазине, поскольку те уже рассчитаны на напряжение 12 вольт. Второй же выдает постоянный ток при изменении напряжения в некоторых пределах, в данном случае схема посчитана для тока 20мА — стандартного тока большинства широко распространенных светодиодов. Это позволяет подключить цепочку из десятка последовательно соединенных светодиодов прямо к стабилизатору, что может пригодиться, например, если вы сделали самодельное светодиодное освещение типа «ресниц» или «ангельских глазок» в фары.

Конечно же, никто не мешает пересчитать номиналы элементов схем под свои запросы.

Краткое описание назначения элементов схемы. Так как обе схемы почти одинаковы, то номера элементов буду давать по первой.Входной фильтр собран на конденсаторах С7-С9, выполняющих сглаживающие и блокировочные функции, супрессора VDR1, «обрезающем» ВЧ-помехи и дросселе L2, выполняющем в данной схеме двойное назначение как сглаживателя бросков тока, так и накопителя энергии. Вместо супрессора можно, и даже более желательно, применить TVS-диод, но так как такие диоды довольно редко встречаются в розничной продаже, по крайней мере в Уфе, то сойдет и первый вариант. В крайнем случае, если не удается найти ни того, ни другого, можно ограничиться бюджетным вариантом: двумя стабилитронами, включенными встречно Однако это будет самым худшим решением в плане быстродействия и надежности защиты. Диод VD3 служит для защиты от переполюсовки.В качестве управляющей микросхемы используется NCP3063 с соответствующей обвязкой. Кстати, если вместо нее планируется использование аналогов типа MC3x063 и прочих, у которых восьмой вывод задействован, нужно просто соединить его накоротко с седьмым. Обвязка состоит из следующих элементов: С6 — фильтр по питанию МС; R3 — ограничение максимального тока через встроенный в МС ключ, в принципе можно заменить перемычкой, но наличие этого резистора может спасти микруху от перегорания если какой либо из внешних транзисторов пробъется, так что пусть лучше будет; C5 — частотозадающий конденсатор; R4-R5 — делитель контура обратной связи, формулу расчета делителя см. в датшите на МС; VD2, R2, VT2 — драйвер полевого транзистора VT1, обеспечивающий форсированный заряд-разряд затвора. При наличии высокого уровня на 2-м выводе МС, затвор VT1 быстро заряжается через диод, а при низком уровне также быстро сливается на землю через открывающийся транзистор VT2. Как вариант, драйвер можно реализовать на комплементарной паре npn и pnp транзисторов, например марки BC817-BC819, как это было описано в ранней статье про сверлилку плат. Кроме того, если большие выходные токи не планируются и ограничены 100 мА или менее, можно вовсе обойтись без внешнего ключа и драйвера, используя непосредственно внутренний ключ МС.Сам преобразователь состоит из двух катушек L1-L2, ключа VT1, проходного конденсатора С3 и диода VD1. Цепочка R1-C4 является снаббером для гашения паразитных колебаний при переключении транзистора. Практика показывает, что и без него схема работает отлично, я просто не стал заморачиваться, и перенес его с чужой схемы. С3 ставить только керамику, VD1 с пиковым током не менее тройного тока нагрузки.C1-C2 формируют выходной фильтр, самовосстанавливающийся предохранитель F1 защищает схему от перегрузки в случае короткого замыкания выхода на массу. Об этом следует упомянуть особо: представленная схема стабилизатора очень «боится» перегрузок и коротких замыканий. С большой долей вероятности даже непродолжительное КЗ приведет к перегреву и выгоранию ключа, а возможно также и диода. Поэтому предохранитель в выходной цепи обязателен! В частности, представленная схема стабилизатора напряжения может без вреда для себя выдавать ток до 400 мА. Эту величину можно увеличить, применив более мощный транзистор и диод, однако приведенную ниже плату придется переразвести под другой корпус транзистора, поскольку используемый здесь полевик в корпусе SOT23 имеет невысокую рассеиваемую мощность, что является платой за миниатюрность. «Землю» данной схемы допускается присоединять к массе автомобиля в одной точке, а «земли» потребителей можно цеплять на массу, в любом месте кузова.Отличие схемы стабилизатора тока от стабилизатора напряжения заключается в по-иному организованной цепи обратной связи. Здесь сигнал ОС формируется падением напряжения на шунте R1, и через компенсационную цепочку R4-C7 поступает на вход компаратора МС. Величину сопротивления шунта для получения требуемого тока можно вычислить по формуле Rш=1,25/Iвых, а минимальную рассеиваемую шунтом мощность по формуле Pш=1,25*Iвых. Стабилитрон VD1 служит для сбережения нагрузки от возможных скачков напряжения.Следует также особо отметить, что в отличие от варианта со стабилизацией напряжения, минусовой вывод нагрузки не допускается «сажать на массу», он должен быть обязательно включен через «минус» стабилизатора. Иначе схема работать не будет.Если имеется необходимость диммирования (т. е. изменения яркости свечения светодиодов или полного их гашения), то на 5-й вывод МС можно подавать постоянное, либо широтно-импульсно-модулированное напряжение величиной от 1.25 до 40 вольт. Подав постоянное напряжение, мы полностью погасим подключенные светодиоды, а подводя ШИМ-сигнал, получим изменение яркости пропорционально коэффициенту заполнения. Простейший ШИМ-генератор с регулируемой скважностью можно собрать, например на 555 таймере или микроконтроллере. Рекомендуемая частота ШИМ порядка 200 Гц — при этом человеческий глаз уже не различает мерцание, а индуктивности еще не издают ВЧ-свист.

Ниже представлен рисунок платы, собранной для товарища. Стабилизатор напряжения на 12 вольт для питания светодиодных габаритных ламп суммарной мощностью не более 400 мА. При разводке платы я постарался найти компромиссное решение по критериям цена-мощность-габариты, поэтому на плате присутствуют как традиционные выводные детали, так и компоненты для поверхностного монтажа. За то готовое изделие получилось размером с одноразовую зажигалку, а общая стоимость всей входящей в комплект рассыпухи вышла на полторы сотни рублей.

Возможность диммирования не заложена, так как нам оно без надобности. Готовое изделие имеет габариты порядка 70 на 20 мм, высота 25 мм (из-за высокого электролита, но его при желании можно заменить на низкопрофильный или положить на бок). Входные и выходные контактные площадки имеют стандартные размеры для установки винтовых клеммников, облегчающих подключение-отключение проводов. Три крепежных отверстия под винты М3 позволяют закрепить плату в корпус или удобное для подводки место. Внимание! Подложка, на которую крепится плата должна быть непроводящей, иначе все закоротит! Перед установкой в автомобиль, плату желательно покрыть защитным лаком в несколько слоев, чтобы минимизировать влияние на схему перепадов температуры и влажности.

Так готовое изделие выглядит в реальности:

Проверяем под нагрузкой и при входном напряжении 4,5 вольта

Есть некоторые отличия от рисунка платы, приведенного выше — ранняя версия. Можно было бы сделать еще компактнее и тоньше, используя только детали для поверхностного монтажа, но цена сразу ощутимо возросла бы — танталловые конденсаторы весьма дороги по сравнению с электролитами аналогичной емкости.При попытке воспроизвести изделие у людей, не имеющих опыта пайки SMD компонентов могут возникнуть некоторые трудности, поэтому если будет интерес к данной теме, могу сделать разводку платы под микруху в DIP корпусе и традиционные выводные детали. Габариты конечно увеличатся, за то паять будет просто.

Схема, плата в Spring Layot и спецификации в архиве по ссылке или по этой: Гугл-Диск.

За огромную проделаную работу спасыба Косте, ака Meta_Kot

Цена вопроса: 150 ₽ Пробег: 15000 км

Простой стабилизатор для светодиодов в авто

Светодиоды не любят колебания напряжения, это факт. Не любят они это по причине того, что светодиоды ведут себя не так как лампы или другие линейные приборы. Их ток меняется в зависимости от напряжения нелинейно, поэтому например двухкратное увеличение напряжения увеличивает ток через светодиоды далеко не в 2 раза. Из за чего они перегреваются, быстро деградируют и выходят из строя.

Большинство диодов, применяемых в автомобиле, имеют встроенное сопротивление, которое рассчитано на напряжение 12 вольт. Но напряжение бортовой сети автомобиля никогда не бывает 12 вольт (разве что с разряженным аккумулятором), плюс ко всему оно далеко не такое стабильное, как хотелось бы. Если использовать недорогие китайские диодные приборы в автомобиле без предварительной их стабилизации то они достаточно быстро начнут мигать а затем и вовсе перестанут светить.

Вот и я столкнулся с такой проблемой — светодиоды в габаритах начали мигать, так как я когда-то поленился их стабилизировать.

Существует множество готовых схем-стабилизаторов для 12-вольтовых приборов. Чаще всего на прилавках можно найти микросхему КР142ЕН8Б или подобные ей. Данная микросхема расчитана на ток до 1.5А, но для большего эффекта нужно включение с применением входных и выходных конденсаторов.

Стандартная схема предполагает применение 0.33 и 0.033мкФ конденсаторов (если память не изменяет). Но лично я решил сделать включение с применением 4-х конденсаторов: 470мкФ и 0.47мкФ на вход и соответственно в 10 раз меньшая емкость на выход. Я уже не помню, но где-то на форумах я встречал именно такое включение, решил его применить.

Чтобы все это можно было легко внедрить в авто, я решил напаять все элементы непосредственно на микросхему.

Микросхема с элементами

Микросхема с элементами

К микросхеме припаяны, помимо конденсаторов, два провода, соответственно вход и выход. Масса будет приходить через крепление микросхемы. Средняя нога микросхемы задействована только под ножки конденсаторов. Выводить провод от нее я не стал, так как она объединена с корпусом схемы. Для прочности всей конструкции я решил залить все это клеем, затем завернуть в термоусадку.

Микросхемы

Микросхема и термоусадка

Готовые стабилизаторы

В автомобиле можно крепить через саморез к кузову.

Прикрепленный стабилизатор

Пост не претендует на что-то супер-мега технологичное, но мало ли кому может пригодиться 🙂

Схема включения

Вместо КР142ЕН8Б можно использовать L7812CV, схема включения аналогичная. Если взглянуть на стандартную схему и сравнить с моей то возникают вопросы “зачем именно такие емкости?”.

Поясняю: штатная схема включения подразумевает только стабилизацию напряжения, но никак не спасает от просадки (кратковременной) напряжения, поэтому в схему были введены электролиты достаточно большой емкости для сглаживания таких просадок.

По идее конечно АКБ в машине должен выполнить роль фильтра просадок напряжения, но иногда случаются просадки, которые АКБ просто не успевает уловить. Например при подаче искры на свечу зажигания через катушку проходит нехилый ток, который отлично просаживает напряжение в бортсети.

Автор; Максим Ярошенко

Стабилизатор напряжения 12 Вольт для светодиодов в авто своими руками

Описание нюансов сборки стабилизатора напряжения 12 Вольт на автомобиль, список нужных деталей, 3 варианта схем. + ТЕСТ для самопроверки. Разбирам ТОП 5 вопросов по теме и ТОП-3 паяльников для плат.

Чтобы понять, обладаете ли вы достаточной информацией о стабилизаторах для автомобиля, следует пройти небольшой тест:

  1. Зачем на свой автотранспорт устанавливать стабилизатор на 12 вольт?а) Сеть автомобиля дает непостоянное напряжение. Это зависит от степени зарядки аккумулятора. Напряжение колеблется в пределах 11,5 – 14,5 Вольт. Но светодиодные лампы требуют всего 12 Вольт. Для подачи нужного напряжения и ставят СН. б) Светодиодные лампы работают на 18 Вольтах. Чтобы они функционировали при подключении на автомобиле, приходится подавать дополнительную нагрузку через стабилизатор.
  2. Почему светодиодные лампочки часто перегорают без стабилизатора?а) Основная причина – некачественный производитель светодиодов. б) Из-за скачущего напряжения на них.
  3. В каком случае к стабилизатору дополнительно придется подсоединять алюминиевый радиатор?а) Если на автомобиль будут устанавливаться свыше 10 светодиодов. б) При установке на машину светодиодных ламп разного цвета.
  4. Как подключаются светодиоды?а) 3 светодиода подключаются последовательно к резистору, а после собранный набор параллельно соединяют к следующим светодиодам. б) 3 светодиода подключаются параллельно к резистору, а после собранный набор последовательно соединяют к следующим светодиодам.

Ответы:

  1. а) В зависимости от степени зарядки аккумулятора, на светодиодные лампы будет поступать колеблющееся напряжение – от 11,5 до 14,5. Именно поэтому к лампам подключают СН – для получения постоянного напряжения, равного 12 Вольт (такой показатель нужен светодиодам).
  2. б) Светодиоды не рассчитаны на скачки напряжения, которые идут от аккумулятора, поэтому вскоре сгорают без стабилизатора.
  3. а) Если на автомобиль устанавливают свыше 10 светодиодов, то желательно оснастить схему алюминиевым радиатором.
  4. б) Сначала 3 светодиода соединяют последовательно к резистору, а после берут новую сцепку и уже параллельно соединяют их друг с другом.

Автовладельцы часто устанавливают на своем автомобилем светодиодную подсветку. Но лампочки довольно часто выходят из строя, и вся созданная красота сразу же меркнет. Это объясняется тем, что светодиодные лампочки работают неправильно, если их просто подключить к электрической сети. Для них обязательно нужно использовать специальные стабилизаторы. Только в таком случае лампы будут защищены от перепадов напряжения, перегрева, поломки важных компонентов. Чтобы установить стабилизатор напряжения на свой автомобиль, необходимо разобраться в этом вопросе подробно и изучить простую схему, которую получится собрать своими руками.

Определение: СН 12 вольт для автомобиля – маленькое устройство, предназначающееся для гашения излишнего напряжения автомобиля, идущее от аккумулятора. В результате подключенные светодиодные лампы получают постоянную нагрузку в 12 вольт.

Подбор стабилизатора 12 В

Бортовая сеть автомобиля обеспечивает питание от 13 В, но светодиоды для работы нуждаются всего в 12 В. Именно поэтому необходимо устанавливать стабилизатор напряжения, на выходе который будет обеспечивать именно 12 В.

Установив такое оборудование, обеспечит обеспечить нормальные условия для работы светодиодного освещения, что долгое время не выйдет из строя.  Выбирая стабилизаторы, автомобилисты сталкиваются с проблемами, поскольку имеется очень много конструкций, и работают они все по-разному.

Подбирать следует стабилизатор, который:

  1. Станет правильно функционировать.
  2. Обеспечит надежную защиту и безопасность осветительной техники.

Простой стабилизатор напряжения на 12 В собственными руками

Если имеются даже небольшие навыки в сборке электрической схемы, тогда стабилизатор напряжения необязательно приобретать в готовом виде. Для изготовления самодельного устройства человек потратить 50 рублей или меньше, готовая модель стоит несколько дороже. Смысла переплачивать нет, поскольку в результате получится качественный прибор, соответствующий всем необходимым требованиям.

Самый простой, но функциональный стабилизатор можно сделать своими руками без особых усилий. Импульсный прибор собрать очень сложно, особенно для новичка, а потому рассматривать стоит линейные стабилизаторы и любительские схемы на него.

Самый простейший стабилизатор напряжения 12 вольт собирается из схемы (готовой), а также резистора сопротивления. Желательно использовать микросхему LM317. Все детали будут крепиться к перфорированной панели или универсальной печатной плате. Если правильно собрать устройство и подключить его на свой автомобиль, то можно обеспечить хорошее освещение — лампочки перестанут моргать.

Схема LM317 Схема подключения

Список деталей СН 12 В

Чтобы своими руками сделать стабилизатор напряжения, следует найти или купить следующие детали:

  1. Плата — 35 на 20 мм.
  2. Микросхема LD 1084.
  3. Диодный мост RS407. Если именно такого нет, то подбираем любой маленький диод, предназначающийся для обратного тока.
  4. Блок питания с транзистором и двумя сопротивлениями. Это оборудование нужно для того, чтобы происходило отключение конец, когда включается ближний или дальний свет фар.

Три светодиода нужно последовательно соединить с токоограничивающим резистором, выравнивающим электрический ток. Этот набор после следует параллельно подсоединить к следующему набору лампочек.

Как сделать стабилизатор напряжения на 12 вольт для светодиодов в авто  на микросхеме L7812

Чтобы собрать качественный стабилизатор напряжения, можно использовать трехконтактный регулятор напряжения постоянного тока, выпускающийся в серии L7812. Это устройство запитает не только отдельные лампочки в автомобиле, но и целую ленту из светодиодов.

L7812
Компоненты:
  1. Микросхема L7812.
  2. Конденсатор 330 мкф 16 В.
  3. Конденсатор 100 мкф 16 В.
  4. Выпрямительный диод на 1 ампер. Можно использовать 1n4001 или диод Шоттки.
  5. Термоусадка на 3 мм.
  6. Соединительные проводки.
Порядок сборки:
  1. Немножко укорачиваем одну ножку стабилизатора.
  2. Используем припой.
  3. К короткой ножке добавляем диод, а после и конденсаторы.
  4. На проводки помещаем термоусадку.
  5. Занимаемся припайки проводов.
  6. Надеваем термоусадку, прижимаем ее при помощи строительного фена или зажигалки. Тут важно не перестараться и не расплавить термоусадку.
  7. На вход с левой стороны подаем питание, справа будет выход на светодиодную ленту.
  8. Проводим испытание – включаем освещение. Лента должна загореться, срок ее эксплуатации теперь увеличится.

Так делается стабилизатор напряжения 12В собственными руками.

Схема стабилизатора напряжения 12 вольт для светодиодов в авто собственными руками на базе LM2940CT-12.0

Схема LM2940CT-12.0

Также для сборки качественного стабилизатора напряжения на автомобиль используют схему LM2940CT-12.0. В качестве корпуса используем абсолютно любой материал, за исключением древесины. Если в машине планируется установить свыше 10 светодиодных ламп, тогда к стабилизатору желательно прикрепить ещё и алюминиевый радиатор.

Возможно, некоторые уже имели опыт работы с таким оборудованием, и скажут, что нет никакой необходимости использовать дополнительные детали — сразу напрямую подключаем светодиоды и наслаждаемся работой. Так сделать можно, но в таком случае лампочки будут постоянно находиться в неблагоприятных условиях, а потому скоро сгорят.

Достоинства всех приведенных схем стабилизатора напряжения 12В собственными руками  — простота сборки. Чтобы собрать стабилизатор, не нужно обладать какими-то особыми умениями и навыками. Но если предоставленные картинки вызывают только недоумение, тогда своими руками не следует пытаться собрать схему.

Еще важно знать 3 нюанса о том, как собрать стабилизатор напряжения 12 вольт собственными руками

  1. Светодиоды желательно подключать через стабилизатор тока. Таким образом можно будет уравновесить колебания электрической сети, и хозяин автомобиля не будут беспокоиться о бросках тока.
  2. Требования к электропитанию нужно также соблюдать, поскольку, таким образом, свой самостоятельно собранный стабилизатор можно будет правильно подстроить под электрическую сеть.
  3. Собирать желательно такой агрегат, который обеспечит достойную устойчивость, надежность и стабильность – стабилизатор должен держаться в течение долгих лет. Именно поэтому на компонентах не стоит дешевить – приобретайте в хороших магазинах электроники.
Схемы простых стабилизаторов

Как избежать 3 ошибки при пайке схемы

  1. Перед началом всех работ по спайке, обязательно выбираем наиболее подходящий паяльный аппарат, для сборки микросхемы. Тот старый, что лежит дома или в гараже подойдет только опытным людям, новичок же испортит плату, не сумев справиться с мощностью. Наиболее подходящий диапазон напряжения для соединения плат и проводков — 15-30 Ватт. Большую мощность не используем, иначе плата сгорит и придется начинать все сначала, с новыми деталями.
  2. Перед тем, как начинать соединения деталей посредством пайки, удостоверьтесь, что схема хорошо очищена. Для качественной обработки используют простой состав – смешивается любое мыло с чистой водой. После чистая салфетка обмакивается в приготовленный раствор и плата очень качественно протирается по всей поверхности. Если на металле останутся следы мыла, то вытираем их аккуратно сухой салфеткой. На платах часто замечают довольно плотные отложения. Чтобы избавиться от них, придется сходить в магазин с электротоварами и купить специальный очищающий состав. Продавцы подскажут все необходимое. Участок обрабатываем, пока не появится легкий металлический блеск.
  3. Контакты на плате располагаем в правильной последовательности – для начала работаем с маленькими резисторами, а затем переходим на большие детали. Если сначала закрепить все крупные части, то мелкие детали очень неудобно станет присоединять – большие компоненты помешают.

Не стоит пренебрегать советами. Они позволят создать более качественное соединение, а значит и долговечность стабилизатора.

ТОП-3 паяльников для плат

Чтобы упростить себя работу по спайке стабилизатора, желательно купить качественный паяльник. В магазинах имеются агрегаты хороших и проверенных производителей, на которые следует обратить внимание:

  1. Ersa – немецкая компания. Товар очень хороший и надежный, но дорогой, а потому для дома не каждый может себе позволить.
  2. Китайская фирма Quick. Качество на высоте, и цена приемлемая.
  3. Luckey. Самый бюджетный вариант. Оставлять аппарат включенным без присмотра нельзя – возможно возгорание.

Паяльника на 10 Вт хватит, чтобы сделать простую микроплату. При покупке изучите ручку – она не должна быстро греться. Древесины – идеальный вариант. Пластик быстро станет горячим, эбонит тяжелый, а потому работать с мелкими деталями – трудно.

Жало желательно выбирать из меди – легко очищать от нагара после работы. Жала бывают разной формы и продаются наборами. Новичку это не пригодится, а вот опытным людям будет удобно использовать насадки разной конфигурации.

Стабилизаторы напряжения для авто

Ответы на 5 часто задаваемых вопросов о пайке

  1. Сколько нужно держать разогретое жало на детали для хорошей фиксации? – 3 секунд достаточно, если продержать дольше, то плата сгорит.
  2. Какое количество припоя добавлять? – Следим, чтобы он покрыл обрабатываемую часть. Иногда хватает и капли.
  3. Пайка по виду должна выйти блестящей или матовой? – Блестящей.
  4. Покупать дополнительные средства защиты? – Только очки. Если подобрали хороший паяльник, то защищать руки не нужно.
  5. Какую температуру выдерживает микросхема? – 230 градусов.


Смотрите также