(495) 784-43-37 (495) 784-46-90 (495) 784-42-14

ООО СтройИнСталь
Поставки металлопроката
и стройматериалов

Стабильность и качество

ИдеиМеталлургияСтроительствоСтройматериалы
Новости компании

Компания СТРОЙИНСТАЛЬ увеличивает поставки металлопроката в страны СНГ уже с 12.04.2011г.

26.08.2020Профкомплект закупил линию продольно-поперечной резки
Компания Профкомплект (Санкт-Петербург) приобрела линию продольно-поперечной резки. Предыдущая подобная линия была утрачена в связи с пожаром в мае т.г. Однако клиенты, которых компания обслуживает уже более восьми лет, как резчики рулонного металлопроката, высказали пожелания о возврате удобной услуги перемотки рулонов, отмотки с резкой, деления на 625 мм штрипс и т. д...
26.08.2020БМК-Калининград: Металлообработка бьет рекорды
Внутренние показатели отдела металлообработки Балтийской металлургической компании постоянно растут, как растет спрос на токарно-фрезерные, сварочные и сверловочные работы. Действительно, обработать имеющийся металл, приспособить его к возникшим индивидуальным потребностям гораздо проще, чем довольствоваться готовыми стандартными решениями...
26.08.2020Брок-Инвест-Сервис открыл офис продаж в Липецке
Брок-Инвест-Сервис в рамках развития регионального направления бизнеса в августе 2011 г. открыл новый офис продаж в Липецке...
26.08.2020УралСибМет приглашает на 2-й Кубок по мини-футболу
3 сентября 2011 года ТПК УралСибМет в Иркутске проведет 2-й ежегодный турнир по мини-футболу на кубок компании...
26.08.2020"Силовые машины" отгрузили вторую партию оборудования для Саяно-Шушенской ГЭС
ОАО "Силовые машины" осуществило отгрузку второй партии крупногабаритного оборудования, предназначенного для восстановления Саяно-Шушенской ГЭС.
Тяжеловесные узлы для гидроагрегатов СШГЭС были погружены на судно класса "река - море" на причале на Свердловской набережной в Санкт-Петербурге...


Прибор для измерения сопротивления


Измеритель сопротивления: как называется прибор и как проводятся измерения?

Сопротивление элементов электрической цепи — важнейший параметр, поскольку от него зависит величина протекающего в цепи тока. А сила тока, в свою очередь, определяет сечение проводов, номинал автоматов защиты и многое другое. Какой же используют прибор для измерения сопротивления в той или иной ситуации?

Принципы измерения электрического сопротивления

Различают два вида электрического сопротивления: активное и реактивное.

Активное или резистивное

Это противодействие материала движению электрически заряженных частиц, имеющее место при любом виде тока.

Закон Ома наглядно

Определяется из закона Ома для участка цепи: R = U/I, где:

  • R — сопротивление участка цепи, Ом;
  • U — падение напряжения на участке цепи, В;
  • I — сила тока на данном участке, А.

Таким образом, для вычисления активного сопротивления элемента требуется приложить к его выводам некоторое известное напряжение и замерять силу протекающего в цепи тока.

Реактивное

Существует только в цепях переменного тока, подразделяется на два типа:

Емкостное сопротивление в цепи переменного тока

Для расчета реактивного сопротивления применяются более сложные методики и приборы.

Конструкция простейшего омметра

Омметр — прибор для измерения активного сопротивления. Самый простой вариант — аналоговый или стрелочный. Действие основано на способности протекающего по проводнику тока создавать магнитное поле, значительно усиливающееся при сматывании провода в катушку.

Внутри аналогового омметра имеются такие компоненты:

  1. подвижная катушка на пружинке с присоединенной к ней стрелкой;
  2. постоянный магнит;
  3. блок ограничивающих резисторов R (нужный выбирается переключателем);
  4. источник питания — батарейка или аккумулятор;
  5. щупы с разъемами для подключения к прибору.

При подсоединении щупов к выводам проверяемого элемента с сопротивлением RX, цепь замыкается и через катушку течет ток.

Его величина зависит от RX, а ограничивающий резистор R исключает возможность короткого замыкания. От силы тока зависит индукция магнитного поля, создаваемого катушкой, и, соответственно, сила ее взаимодействия с постоянным магнитом.

Чем выше эта сила, тем больше смещается катушка, растягивая пружину, и тем дальше отклонится прикрепленная к ней стрелка. Подключая разные ограничивающие резисторы, меняют чувствительность прибора — от нее зависит диапазон измерений.

Цифровой омметр

Цифровой омметр — современный вариант. Вместо аналогового измерительного механизма используются датчики напряжения и тока, отсылающие сигнал на микропроцессор. Тот анализирует данные и выводит результат на жидкокристаллический дисплей.

Преимущества перед аналоговыми:

  • высокая точность показаний;
  • результаты измерений легко читаются (при использовании аналогового омметра приходится вглядываться в шкалу);
  • компактные размеры;
  • дополнительные функции: память, фиксация показаний и пр.

Недостаток цифровых моделей: датчики опрашивают цепь через определенные временные интервалы, потому невозможно отследить изменения измеряемого параметра в режиме реального времени.

Из-за этого профессиональные мастера-электронщики часто отдают предпочтение аналоговым моделям.

В быту применяют не омметры, а мультиметры — многофункциональные приборы для измерения нескольких параметров (сопротивление, напряжение, сила тока, емкость конденсатора и т.д.).

Мегаомметры

Важное значение имеет величина сопротивления изоляции токоведущих частей, поскольку она обеспечивает безопасную эксплуатацию электроустановки и предотвращает короткое замыкание. Изоляцию изготавливают из диэлектриков — материалов с высоким электрическим сопротивлением, измеряемым мегаомами.

Потому для создания тока в цепи напряжения источника, тока имеющегося в обычном омметре недостаточно. Мегаомметр оснащен генератором постоянного тока, приводимым в действие вращением рукоятки. Он способен развивать напряжение до 2,5 кВ.

Вместо двух разъемов для подключения щупов, как у омметра, в мегаомметре имеется три с такой маркировкой:

  1. «З» (в некоторых моделях «Rx»): земля;
  2. «Л» («-»): линия;
  3. «Э»: экран.

Первые два разъема используют при измерении сопротивления изоляции между токоведущими частями и землей либо между разными фазами. При помощи разъема «Э» нейтрализуют помехи, влияющие на точность показаний.

Мегаомметры также делятся на аналоговые и цифровые. В первых применяется тот же измерительный механизм, что и в обычных омметрах.

При работе с мегаомметром из-за высокого напряжения требуется осторожность; после измерений необходимо по особой методике разрядить наведенную прибором высоковольтную разность потенциалов (заряд накапливается протяженными участками кабелей).

Измерительные мосты постоянного тока

Недостаток омметров — большая погрешность. В обычных условиях она допустима, но в ряде случаев требуется более точное определение сопротивления.

Для измерения собирают мостовую схему из 4-х резисторов, один из которых — тестируемый (Rx), а три других — образцовые регулируемые (R1, R2, R3).

Одну диагональ моста подключают к полюсам источника питания, к другой через выключатель и ограничивающий резистор подсоединяют амперметр высокой чувствительности (милли- или микроамперметр). Подстраивая резисторы R1, R2 и R3, проверяющий балансирует мост — добивается, чтобы на амперметре отобразился «0».

Такая ситуация наступит при равенстве произведений сопротивлений на противоположных плечах моста, откуда определяют сопротивление Rx тестируемого элемента по формуле: Rx = (R1*R3)/R2.

Приборы измерения сопротивления

Контура заземления

Залог надлежащей работы защитного заземления — его низкое сопротивление.

Требуется регулярно проверять сопротивление контура заземления, поскольку он может возрастать из-за следующих причин:

  • окисление (коррозия) поверхности электродов заземлителя;
  • увеличение удельного сопротивления грунта;
  • нарушение контакта между токопроводящей шиной и заземлителем из-за коррозии или механических повреждений.

Измерение сопротивления заземлителя также вычисляют по закону Ома для участка цепи.

Для этого на определенном расстоянии от тестируемого заземлителя, в грунт вбивают основной и вспомогательный измерительный электроды, затем соединяют их проводами с заземлителем.

Полученную цепь подключают к калиброванному источнику питания и замеряют две величины:

  1. протекающий в цепи ток I;
  2. падение напряжения U на участке между тестируемым заземлителем и вспомогательным электродом.

Искомое сопротивление определяют делением: R = U / I.

Измерение контура заземления

Описанный метод амперметра и вольтметра является наиболее простым, но дает значительную погрешность. Поэтому работа современных приборов основана на более точных методах, например, компенсационном. Сопротивление контуров заземления измеряют как аналоговыми приборами (МС-08, Ф4103-М1, М4116), так и цифровыми.

Весьма удобны приборы с токоизмерительными клещами, обладающие следующими преимуществами:

  • не используются дополнительное оборудование и электроды (необходимо двое токоизмерительных клещей);
  • не требуется разрывать цепь заземлителя.

Удельного сопротивления грунта

Некоторые из приборов для измерения сопротивления контура заземлителя, дополнительно снабжены функцией определения удельного сопротивления грунта. Для этого электроды подключают по иной схеме. Например, часто используют метод 4-х электродов.

Важно не располагать электроды ближе 20 м от коллекторов, металлических башен и прочих конструкций с хорошей проводимостью, так как они сильно искажают результаты измерений.

В цепях переменного тока

В цепях переменного тока помимо активного сопротивления имеет место реактивное. Для его измерения применяются другие приборы.

Петли фаза-ноль

Сопротивление участка электросети от трансформатора на подстанции до розетки нормируется. Если оно вследствие ошибок при монтаже или неверного подбора сечения проводов окажется завышенным, это приведет к несбалансированному режиму работы и даже аварии.

Данный участок представляет собой петлю, образованную фазным и нулевым проводниками. Отсюда и название — петля фаза-ноль.

Порядок действий при расчете сопротивления:

  1. вольтметром замеряют напряжение U1 между фазой и нулем в розетке. В идеале следует замерять ЭДС на выводах обмотки трансформатора, но доступа к нему обычно нет;
  2. в розетку включают нагрузку и последовательно с ней — амперметр. Нагрузка подбирается так, чтобы сила тока I в цепи была стабильной и составляла 10 – 20 А. При меньших значениях завышенное сопротивление петли может себя не проявить;
  3. вольтметром определяется падение напряжения U2 на нагрузке.

Расчет производят так:

  1. вычисляют полное сопротивление цепи: R1 = U1/I;
  2. рассчитывают сопротивление нагрузки: R2 = U2/I;
  3. определяют сопротивление петли фаза-ноль путем вычитания из полного сопротивления цепи сопротивления нагрузки: Rп = R1 – R2.

Обычным мультиметром выполнить измерения нельзя — он дает большую погрешность. Требуются приборы повышенной точности — класса 0,2. Это измерители лабораторного уровня: они часто поверяются и требуют от оператора высокой квалификации. Вместо амперметра и вольтметра по отдельности для измерения сопротивления петли фаза-ноль, используют специальные приборы.

Иногда их называют «измерителями тока короткого замыкания», но это не совсем верно: непосредственно токи КЗ прибор не определяют, он лишь вычисляет его значение, основываясь на результатах измерения (по обычному закону Ома).

Прибор содержит:

  • высокоточный амперметр;
  • высокоточный вольтметр;
  • нагрузочный резистор;
  • элементы питания для функционирования цифрового блока обработки данных.

Пользователю достаточно вставить щупы в розетку и нажать кнопку «пуск». Измеритель сам выполнит порядок действий, описанный выше, и отобразит результат на дисплее.

Видео по теме

Как правильно пользоваться прибором для измерения сопротивления изоляции:

В процессе эксплуатации электросети приходится замерять сопротивление самых разных ее элементов. Для этого выпускают широкий перечень приборов, каждый из которых имеет свое назначение и не может быть заменен другими.

Поделиться:

Нет комментариев

Как устроены и работают приборы для измерения сопротивления

По своей физической природе все вещества по-разному реагируют на протекание через них электрического тока. Одни тела хорошо его пропускают и их относят к проводникам, а другие очень плохо. Это диэлектрики.

Свойства веществ противодействовать протеканию тока оценивают численным выражением — величиной электрического сопротивления. Принцип его определения предложил Георг Ом. Его именем названа единица измерения этой характеристики.

Взаимосвязь между электрическим сопротивлением вещества, приложенным к нему напряжением и протекающим электрическим током принято называть законом Ома.

Принципы измерения электрического сопротивления

Исходя из приведенной на картинке зависимости трех важнейших характеристик электричества определяют величину сопротивления. Для этого необходимо иметь:

1. источник энергии, например, батарейку или аккумулятор;

2. измерительные приборы силы тока и напряжения.

Источник напряжения через амперметр подключают к измеряемому участку, сопротивление которого необходимо определить, а вольтметром меряют падение напряжения на потребителе.

Сняв отсчет тока I амперметром и величину напряжения U вольтметром, рассчитывают значение сопротивления R по закону Ома. Этот простой принцип позволяет выполнять замеры и производить расчеты вручную. Однако, пользоваться им в таком виде сложно. Для удобства работы созданы омметры.

Конструкция простейшего омметра

Производители измерительных приборов изготавливают устройства измерения сопротивления, работающие по:

1. аналоговым;

2. или цифровым технологиям.

Первый вид приборов называют стрелочными за счет способа отображения информации — перемещения стрелки относительно начального положения в точку отсчета на шкале.

Омметры стрелочного типа, как измерительные приборы сопротивлений, появились первыми и продолжают успешно работать до настоящего времени. Они есть в арсенале инструментов большинства электриков.

В конструкции этих приборов:

1. все компоненты приведенной схемы встроены в корпус;

2. источник выдает стабилизированное напряжение;

3. амперметр измеряет ток, но его шкала сразу проградуирована в единицах сопротивления, что исключает необходимость выполнения постоянных математических расчетов;

4. на внешние вывода клемм корпуса подключаются провода с концами, обеспечивающими быстрое создание электрической связи с испытуемым элементом.

Стрелочные приборы подобного класса измерения работают за счет собственной магнитоэлектрической системы. Внутри измерительной головки помещена обмотка провода, в которую подключена токопроводящая пружинка.

По этой обмотке от источника питания через измеряемое сопротивление Rx проходит ток, ограничиваемый резистором R до уровня миллиампер. Он создает магнитное поле, которое начинает взаимодействовать с полем постоянного магнита, расположенного здесь же, которое показано на схеме полюсами N—S.

Чувствительная стрелка закреплена на оси пружинки и под действием результирующей силы, сформированной от влияния этих двух магнитный полей, отклоняется на угол, пропорциональный силе протекающего тока или величине сопротивления проводника Rx.

Шкала прибора выполнена в делениях сопротивления — Омах. За счет этого положение стрелки на ней сразу указывает искомую величину.

Принцип работы цифрового омметра

В чистом виде цифровые измерители сопротивлений выпускаются для выполнения сложных работ специального назначения. Массовому потребителю сейчас доступен большой ассортимент комбинированных приборов, совмещающих в своей конструкции задачи омметра, вольтметра, амперметра и другие функции.

Для замера сопротивления необходимо перевести соответствующие переключатели в требуемый режим работы прибора и подключить измерительные концы к проверяемой схеме.

При разомкнутых контактах на табло будет индикация «I», как показано на фотографии. Оно соответствует большему значению, чем прибор может определить на заданном участке чувствительности. Ведь в этом положении он уже измеряет сопротивление воздушного участка между контактами зажимов соединительных проводов.

Когда же концы установлены на резистор или проводник, то цифровой омметр отобразит значение его сопротивления реальными цифрами.

Принцип измерения электрического сопротивления цифровым омметром тоже основан на применении закона Ома. Но, в его конструкции уже работают более современные технологии, связанные с использованием:

1. соответствующих датчиков, предназначенных для измерения тока и напряжения, которые передают информацию по цифровым технологиям;

2. микропроцессорных устройств, обрабатывающих полученные сведения от датчиков и выводящих их на табло в наглядном виде.

У каждого типа цифрового омметра могут быть свои отличительные пользовательские настройки, которые следует изучить перед работой. Иначе по незнанию можно допустить грубые ошибки, ибо подача напряжения на его вход встречается довольно часто. Она проявляется выгоранием внутренних элементов схемы.

Обычными омметрами проверяют и измеряют электрические цепи, сформированные проводами и резисторами, обладающие относительно небольшими электрическими сопротивлениями на пределах до нескольких десятков или тысяч Ом.

Измерительные мосты постоянного тока

Электрические приборы измерения сопротивления в виде омметров созданы как переносные, мобильные устройства. Ими удобно пользоваться для оценки типовых, стандартных схем или прозвонки отдельных цепей.

В лабораторных условиях, где часто нужна высокая точность и качественное соблюдение метрологических характеристик при выполнении измерений работают другие устройства — измерительные мосты постоянного тока.

Электрические схемы измерительных мостов на постоянном токе

Принцип работы таких приборов основан на сравнении сопротивлений двух плеч и создании баланса между ними. Контроль сбалансированного режима осуществляется контрольным мили- или микроамперметром по прекращению протекания тока в диагонали моста.

Когда стрелка прибора установится на ноль можно вычислить искомое сопротивление Rx по значениям эталонов R1, R2 и R3.

Схема измерительного моста может иметь возможность плавного регулирования сопротивлений эталонов в плечах или выполняться ступенчато.

Внешний вид измерительных мостов

Конструктивно такие приборы выполняются в едином заводском корпусе с возможностью удобной сборки схемы для электрической проверки. Органы управления переключения эталонов позволяют быстро выполнять измерения сопротивлений.

Омметры и мосты предназначены для измерения сопротивления проводников электрического тока, обладающих резистивным сопротивлением определенной величины.

Приборы измерения сопротивления контура заземления

Необходимость периодического контроля технического состояния контуров заземлений зданий вызвана условиями их нахождения в грунте, который вызывает коррозионные процессы металлов. Они ухудшают электрические контакты электродов с почвой, проводимость и защитные свойства по стеканию аварийных разрядов.

Принцип работы приборов этого типа тоже основан на законе Ома. Зонд контура заземления стационарно размещен в земле (точка С), за счет чего его потенциал равен нулю.

На одинаковых расстояниях от него порядка 20 метров забивают в грунт однотипные заземлители (главный и вспомогательный) так, чтобы стационарный зонд был расположен между ними. Через оба этих электрода пропускают ток от стабилизированного источника напряжения и замеряют его величину амперметром.

На участке электродов между потенциалами точек А и С вольтметром замеряют падение напряжения, вызванное протеканием тока I. Далее проводится расчет сопротивления контура делением U на I с учетом поправки на потери тока в главном заземлителе.

Если вместо амперметра и вольтметра использовать логометр с катушками тока и напряжения, то его чувствительная стрелка будет сразу указывать конечный результат в омах, избавит пользователя от рутинных вычислений.

По этому принципу работает много марок стрелочных приборов, среди которых популярны старые модели МС-0,8, М-416 и Ф-4103.

Их удачно дополняют разнообразные современные измерители сопротивлений, созданные для подобных целей с большим арсеналом дополнительных функций.

Приборы измерения удельного сопротивления грунта

С помощью только что рассмотренного класса приборов также измеряют удельное сопротивление почвы и различных сыпучих сред. Для этого их включают по другой схеме.

Электроды главного и вспомогательного заземлителя разносят на расстояние, большее 10 метров. Учитывая то, что на точность замера могут влиять близкорасположенные токопроводящие объекты, например, металлические трубопроводы, стальные башни, арматура, то к ним допустимо приближаться не меньше, чем на 20 метров.

Остальные правила измерения остаются прежними.

По такому же принципу работают приборы измерения удельного сопротивления бетона и других твердых сред. Для них применяются специальные электроды и незначительно меняется технология замера.

Как устроены мегаомметры

Обычные омметры работают от энергии батарейки или аккумулятора — источника напряжения небольшой мощности. Его энергии достаточно для того, чтобы создать слабый электрический ток, который надежно проходит через металлы, но ее мало для создания токов в диэлектриках.

По этой причине обычным омметр не может выявить большинство дефектов, возникающих в слое изоляции. Для этих целей специально создан другой тип приборов измерения сопротивлений, которые принято называть на техническом языке «Мегаомметр». Название обозначает:

  • мега — миллион, приставка;

  • Ом — единица измерения;

  • метр — общепринятое сокращение слова измерять.

Внешний вид

Приборы этого типа тоже бывают стрелочными и цифровыми. В качестве примера можно продемонстрировать мегаомметр марки М4100/5.

Его шкала состоит из двух поддиапазонов:

1. МΩ — мегаомы;

2. KΩ — килоомы.

Электрическая схема

Сравнивая ее со схемой устройства обычного омметра, легко увидеть, что она работает по тем же самым принципам, основанным на применении закона Ома.

В качестве источника напряжения выступает генератор постоянного тока, ручку которого необходимо равномерно вращать с определенной скоростью порядка 120 оборотов в минуту. От этого зависит уровень высоковольтного напряжения, выдаваемого в схему. Эта величина должна пробить слой дефектов с пониженной изоляцией и создать сквозь нее ток, который отобразится перемешением стрелки по шкале.

Переключатель режима измерения МΩ—KΩ коммутирует положение групп резисторов схемы, обеспечивая работу прибора в одном из рабочих поддиапазонов.

Отличием конструкции мегаомметра от простого омметра является то, что на этом приборе используются не две выходные клеммы, подключаемые к измеряемому участку, а три: З (земля), Л (линия) и Э (экран).

Клеммами земля и линия пользуются для измерения сопротивдения изоляции токоведущих частей относительно земли или между разными фазами. Клемма экрана призвана устранить воздействие создаваемых токов утечек через изоляцию на точность работы прибора.

У большого количества мегаомметров других моделей клеммы обозначают немного по-другому: «rx», «—», «Э». Но суть работы прибора от этого не меняется, а клемма экрана используется для тех же целей.

Подробнее об этом смотрите здесь: Как правильно использовать мегаомметр

Цифровые мегаомметры

Соврменные приборы измерения сопротивления изоляции оборудования работают по тем же принципам, что их стрелочные аналоги. Но они отличаются значительно большим количеством функций, удобством в измерениях, габаритами.

Выбирая цифровые приборы для постоянной эксплуатации следует учитывать их особенность: работу от автономного источника питания. На морозе батарейки быстро теряют работоспоосбность, требуют замены. По этой причине работа стрелочными моделями с ручным генератором остается востребованной.

Правила безопасности при работе с мегаомметрами

Минимальное напряжение, создаваемое прибором на выходных клеммах, составляет 100 вольт. Оно используется для проверки изоляции электронных блоков и чувствительной аппаратуры.

В зависимости от сложности и конструкции оборудования электрической схемы на мегаомметрах применяют другие значения напряжений вплоть дл 2,5 кВ включительно. Самыми мощными приборами можно оценивать изоляцию высоковольтного оборудования линий электропередач.

Все эти работы требуют четкого выполнения правил безопасности, а осуществлять их могут исключительно подготовленные специалисты, имеющие допуск к работам под напряжением.

Характерными опасностями, создаваемыми мегаомметрами при работе являются:

  • опасное высокое напряжение на выходных клеммах, измерительных проводах, подключенном электрическом оборудовании;

  • необходимость предотвращения действия наведенного потенциала;

  • создание остаточного заряда на схеме после выполнения замера.

При измерении сопротивления слоя изоляции высокое напряжение прикладывается между токоведущей частью и контуром земли или оборудованием другой фазы. На протяженных кабелях, линиях электропередачи оно заряжает емкость, образованную между разными потенциалами. Любой неумелый работник своим телом может создать путь для разряда этой емкости и получить электрическую травму.

Чтобы исключить такие несчастные ситуации перед выполнением замера мегаомметром проверяют отсутствие опасного потенциала на схеме и снимают его после работы с прибором по специальной методике.

Омметры, мегаомметры и рассмотренные выше измерители работают на постоянном токе, определяют только резистивное сопротивление.

Приборы измерения сопротивления в цепях переменного тока

Наличие большого количества различных индуктивных и емкостных потребителей как в бытовых домашних электросетях, так и на производстве, включая предприятия энергетики, создает дополнительные потери энергии за счет реактивной составляющей полного электрического сопротивления. Отсюда возникает необходимость ее полного учета и выполнения специфических измерений.

Приборы для измерения сопротивления петли фаза-ноль

Когда в электрической проводке происходит неисправность, приводящая к закорачиванию потенциала фазы на ноль, то образуется цепь, по которой идет ток короткого замыкания. На его величину влияет сопротивление участка электропроводки от места КЗ до источника напряжения. Оно определяет величину аварийного тока, который должен отключаться автоматическими выключателями.

Поэтому сопротивление петли фаза-ноль необходимо выполнять на самой удаленной точке и с его учетом подбирать номиналы защитных автоматов.

Для выполнения подобных замеров разработано несколько методик, основанных на:

  • падении напряжения при: отключенной цепи и на сопротивлении нагрузки;

  • коротком замыкании с пониженными токами от постороннего источника.

Замер на нагрузочном сопротивлении, встроенном в прибор, отличается точностью и удобством. Для его выполнения концы прибора вставляют в самую отдалённую от защит розетку.

Нелишним бывает выполнение измерений во всех розетках. Современные измерители, работающие по этому методу, сразу показывают сопротивление петли фаза-ноль на своем табло.

Все рассмотренные приборы представляют только часть устройств для измерения сопротивления. На предприятиях энергетики работают целые измерительные комплексы, позволяющие постоянно анализировать изменяющиеся величины электрических параметров на сложном высоковольтном оборудовании и принимать экстренные меры для устранения возникающих неисправностей. 

Омметр

Радиоэлектроника для начинающих

Стоит открыть любой учебник по электротехнике и сразу выясняется, что практически все электротехнические величины названы в честь великих физиков прошлого: Вольт, Ампер, Генри, Ом, Фарада, Тесла, Герц. Конечно, обидно, что российских физиков в этом списке нет.

Немецкий физик Георг Ом первый ввёл понятие сопротивления. В его честь единицу измерения сопротивления стали называть «Ом». Эта величина изображается греческой буквой омега – Ω.

Раньше радиоэлементы так и назывались «сопротивление» и лишь много позже в обиход вошло слово резистор. До введения маркировки с помощью цветных полосок все необходимые данные наносились непосредственно на корпус резистора. В технической литературе можно встретить такие обозначения: килоом и мегаом, что означает соответственно тысяча ом и миллион ом. На принципиальных схемах рядом с обозначением резистора можно встерить надписи: 4К7 – четыре и семь килоома (4,7 кОм) или 1М2 – один и два мегаома (1,2 МОм). На зарубежных схемах «Ом» пишется как «Ohm».

Для измерения сопротивлений используется прибор, который называется Омметр. Приборы, измеряющие только сопротивление, в радиолюбительской практике обычно не используются. Такие высокоточные приборы применяются на заводах выпускающих резисторы для определения номинала с определённой погрешностью или в научно-исследовательских лабораториях.

Зато все знают такое понятие как тестер или мультиметр. Такие приборы объединяют в себе вольтметр, амперметр и омметр + ещё функционал дополняется возможностью проверки диодов или же измерения температуры. Всё зависит от стоимости и исполнения прибора. Мультиметры бывают стрелочные и цифровые. Каждый из них имеет свои особенности, достоинства и недостатки.

На принципиальных схемах омметр обозначается следующим условным графическим обозначением.

Стоит понимать, что так обозначается прибор целиком. В реальности же омметр также собран из достаточно большого количества радиодеталей, и его принципиальная схема включает в себя немалое количество элементов. Данное условное обозначение применяется в основном для того, чтобы показать, на каком участке схемы и каким прибором необходимо проводить измерение. Вот пример.

Здесь на схеме показано, как нужно замерять сопротивление звуковой катушки динамика. Из схемы видно, что кроме омметра (измерительного прибора) и самого динамика ничего не нужно.

Как уже говорилось, омметр, как правило, входит в состав мультиметра. Исключение составляют только узкоспециализированные и высокоточные приборы для измерения сопротивления. Они стоят довольно дорого и их могут позволить себе только крупные фирмы и исследовательские лаборатории.

Омметр в составе тестера-мультиметра используется как вспомогательный. Прежде всего, им можно проверять исправность транзисторов и диодов, а при небольшом навыке стабилитронов и тиристоров. Омметр незаменим при поиске самых главных неисправностей электронных схем:

  • Короткое замыкание, где его быть не должно.

  • Обрыв там, где должна быть замкнутая цепь.

Конечно, омметром проверяются обмотки трансформаторов, электродвигателей. Несложно проверить электролитические конденсаторы большой ёмкости, но только на исправность. На утечку проверить электролит не удастся.

О стрелочных измерительных приборах…

Стрелочные приборы в настоящее время применяются редко ввиду большой погрешности, ограниченной функциональности и необходимости расчёта результатов показаний. Кроме того, стрелочные приборы время от времени требуют калибровки.

Стоит отметить, что стрелочные омметры устроены проще своих цифровых собратьев. Ранее, ещё до широкого распространения цифровых мультиметров, в ходу у радиолюбителей были так называемые авометры. Авометр – это стрелочный многофункциональный прибор, который в одном корпусе объединяет три прибора для измерения основных электрических величин: амперметр – измеряет силу тока, вольтметр – измеряет напряжение и омметр – измеряет сопротивление. Как видим, название авометра происходит от названий тех приборов, которые входят в его состав.

Стоит отметить, что для стрелочных приборов, таких как амперметр и вольтметр не нужен источник питания (батарейка), а омметр обязательно требует наличие батареи питания.

Дело тут в том, что стрелочные приборы амперметр и вольтметр измеряют такие величины, как ток и напряжение на рабочих, включенных приборах. И именно поэтому им не нужен свой собственный источник питания, так как энергию для отклонения указательной стрелки они получают от участка схемы, на котором проводится замер электрических величин.

С омметром другая история. Омметр замеряет сопротивление. Но замерить сопротивление участка цепи, которое находиться под рабочим напряжением нельзя. Можно лишь замерить ток и напряжение на участке цепи и с помощью закона ома вычислить сопротивление этого участка. Думаю, с этим понятно.

Поэтому омметр используют лишь в тех случаях, когда нужно измерить сопротивление участка цепи или радиодетали при выключенном рабочем электропитании. А для того, чтобы определить сопротивление какого-либо участка цепи или радиодетали, нужно пропустить через него пусть и небольшой ток, которого достаточно для отклонения стрелки стрелочного прибора. Именно поэтому стрелочные вольтметры и амперметры могут работать и без батареи питания, но вот даже стрелочный омметр без батарейки работать не будет.

К недостаткам стрелочных приборов можно отнести достаточно большие габариты, необходимости калибровки, трудоёмкость при считывании показаний. Но, несмотря на это, и у стрелочных приборов есть свои преимущества.

Преимущество стрелочных приборов.

Что можно сказать в пользу стрелочных измерительных приборов? А вот что. Как уже говорилось, стрелочный амперметр и вольтметр не нуждаются в источнике питания. Об этом весомом преимуществе вспоминаешь регулярно, когда в цифровом мультиметре наглухо садится батарейка

Современный мультиметр в обязательном порядке требует наличия батареи питания. Она нужна для того, чтобы питать микросхемы контроллера и дисплея, на котором отображаются результаты измерений.

В пользу стрелочных приборов можно отнести и то, что они имеют достаточно простое устройство. Это напрямую сказывается на ремонтопригодности таких приборов. Восстановить работу стрелочного прибора порой не так уж и сложно и дорого, в то время как восстановить современный цифровой мультиметр иногда просто невозможно.

Взглянем на внутренности цифрового мультиметра.

Прибор питается от батарейки типа «Крона» напряжением 9 вольт. Её, предохранитель и контроллер прибора видно при снятой задней стенке. Также видны контактные участки многопозиционного переключателя и другие элементы схемы.

Рассмотрим основные практические измерения с помощью популярного прибора DT-830B. Прибор представляет собой компактный универсальный мультиметр, позволяющий измерять постоянное и переменное напряжение, силу тока и сопротивление. Кроме того на панели прибора есть специальный разъём для проверки коэффициента усиления h31Э (hFE) маломощных транзисторов.

Практическая работа с мультиметром DT-830B.

Прежде чем приступать к работе следует твёрдо запомнить одно правило. Независимо от того, что вы собираетесь мерить: ток, напряжение или сопротивление всегда необходимо начинать с максимального предела и поэтапно переходить на более низкие пределы измерения.

Пределы измерения омметра выглядят вот так.

На панели мультиметра DT-830B они ограничены зелёной линией. Прибор имеет 5 пределов измерений:

  • 200 - на этом пределе измеряются сопротивления величиной до 200 Ом;

  • 2000 - на этом пределе измеряются сопротивления до 2 килоом (2 кОм = 2000 Ом);

  • 20k - на этом пределе измеряются сопротивления, величина которых не превышает 20 килоом (20 кОм = 20 000 Ом);

  • 200k - предел для измерения сопротивлений до 200 килоом (200 кОм = 200 000 Ом);

  • Ну, и наконец, 2000k - предел для измерения сопротивлений до 2 мегаом.

Если вы запутались в килоомах и мегаомах, и не знаете как определить, сколько это будет в омах, то добро пожаловать сюда. Там подробно рассказано о сокращённой записи численных величин.

Когда в режиме измерения сопротивления оба щупа разомкнуты, на индикаторе в старшем разряде высвечивается цифра 1, что означает бесконечно большое сопротивление.

А при замкнутых накоротко щупах на индикаторе высвечиваются три нуля. Это значить, что измерительная цепь коротко замкнута. Иногда самая правая цифра может быть 1 или 2 (на дисплее типа вот так 001 или 002). Это величина погрешности самого прибора. Она настолько незначительна, что ей можно пренебречь.

У профессиональных мультиметров, например В-38, которые используются в лабораториях, имеется потенциометр калибровки, с помощью которого можно установить > 0

Прибор для измерения сопротивления изоляции

Электрическая энергия передается по проводам, жилам кабелей, шинам. Электрический ток преобразуется в тепло в нагревательных элементах, создает вращающее магнитное поле в обмотках электродвигателей. Материалы, по которым он проходит, объединяет общее свойство: они проводят электрический ток. А свойство, характеризующее способность проводить ток лучше или хуже, называется электрическим сопротивлением.

Сопротивление материалов, называемых проводниками, относительно мало. Разница только в том, что у металлов и сплавов, использующихся для изготовления нагревательных элементов, оно повыше. За счет этого ток, проходя через них, вызывает их нагрев.

Но передача электроэнергии и функционирование всех электроприборов невозможна без материалов, имеющих противоположное свойство – не проводить ток. Такие материалы называют изоляторами.

Для проводов и кабелей изоляторами являются материалы, которыми покрыты токопроводящие жилы. Для нагревателей – термостойкое покрытие нагревательных элементов. Обмоточные провода электродвигателей покрыты тонким слоем лака. Все они выполняют функцию, сходную с водопроводной трубой: направляют ток в нужное русло, не позволяя ему попадать туда, куда не надо.

Состав изоляции кабеля

Но идеальный изолятор в обычных условиях получить невозможно. Любой материал, не проводящий ток, обладает хоть и малым, но сопротивлением. Оно настолько незначительно, что им можно пренебречь, работоспособность электрооборудования от этого не ухудшается. Но состояние изоляторов может со временем измениться. В электрооборудование попадает вода. В чистом виде она является изолятором (дистиллированная вода), но в том, в котором она существует в быту, она – проводник. Попадая на изоляционные поверхности, она ухудшает их свойства и приводит к коротким замыканиям.

Фарфоровая изоляция нагревательного элемента в утюге

Оболочки и изоляция жил кабелей и проводов со временем стареют или повреждаются. Процесс старения длится много лет, а повреждения возникают внезапно. Это можно не заметить, но начавшийся процесс ухудшения изоляции со временем развивается все быстрее, приводя к выходу оборудования из строя.

И если бы только оборудования. Короткие замыкания в кабелях или электроприборах приводят к пожарам. Ухудшение фазной изоляции приводит к появлению на корпусах электрооборудования опасных для жизни напряжений. А это уже угрожает жизни людей.

Как оценить состояние изоляции? Ведь ее повреждение происходит в местах, недоступных для осмотра. Для этой цели служат измерительные приборы, называемые мегаомметрами.

Принцип измерения сопротивления изоляции

Измерить сопротивление изоляции при помощи мультиметра не получится. Ведь, даже находясь под номинальным рабочим напряжением, она никак не проявляет признаков старения. Ток через поврежденные участки настолько мал, что его не измерить обычными методами. А через исправную изоляцию он еще меньше.

Для измерений используется напряжение постоянного тока повышенной величины. Почему постоянного? У кабелей существует небольшое емкостное сопротивление. А конденсатор проводит переменный ток. Измерения будут неточными, так как наличие емкостного тока снизит реальное значение сопротивления.

Повышенная величина напряжения нужна, чтобы заставить изоляцию стать проводником электрического тока. Кроме того, изоляция при измерении проходит испытание: выдержала повышенное напряжение, значит – и при номинальном сохранит свои характеристики. Производители рассчитывают изоляционные материалы своих изделий так, чтобы они выдерживали испытательное напряжение без повреждения. Поэтому кабели на напряжение 380 В переменного тока спокойно держат 1000 В постоянного от мегаомметра.

Принцип работы электромеханического мегаомметра

Задача любого мегаомметра – создать на измерительных выводах напряжение выбранной для измерений величины и измерить ток, проходящий по измеряемой цепи.

Сначала для генерации напряжения использовались электромеханические машины постоянного тока. Их роторы вращались при помощи рукоятки мегаомметра. Для того, чтобы генератор при измерениях выдавал номинальное напряжение, частоту вращений выдерживали в пределах 2 оборота в секунду.

Мегаомметр М4100

Такие конструкции применялись в мегаомметрах М4100, но применяется и сейчас – в ЭСО 202. Достоинство этих приборов одно: им не требуется ни подключение к сети, ни батарейки или аккумуляторы. Но недостатков намного больше:

  • Во время измерений корпус прибора сложно удержать в неподвижном состоянии. Вместе с корпусом дергается и стрелка, что снижает точность измерений.
  • Показания прибора зависят от скорости вращения.
  • В местах, где провода прибора при измерениях приходится держать руками (с применением диэлектрических перчаток, конечно), в измерениях участвуют два человека. Один обеспечивает контакт проводов с объектом измерений, другой – крутит ручку мегаомметра.
  • При большом количестве требуемых измерений процесс происходит медленнее, чем при использовании электронных приборов.

Измерительная система электромеханических приборов – аналоговая, результаты считываются по шкале со стрелочным указателем. Дополнительный недостаток измерительной системы – шкала нелинейная, класс точности – небольшой.

Мегаомметр ЭСО 202

Отличие современного прибора ЭСО 202 от М4100 – наличие переключателя напряжений, выдаваемых мегаомметром. Это удобно при измерениях на объектах, имеющих в составе электрооборудование, сопротивление изоляции которого измеряют при разных напряжениях. Например, кабели с напряжением 380 В (изоляция измеряется при 1000 В) и электродвигатели (500 В). В остальном приборы схожи, только переключение диапазонов измерений у М4100 производится на клеммах прибора, а у ЭСО 202 – переключателем.

Электронные мегаомметры

Следующим этапом развития мегаомметров стали электронные приборы. В них формирование испытательного напряжения осуществляет электронная схема, а измерение – аналоговый измеритель, тоже на полупроводниковых элементах. В схеме измерения ничего не поменялось, разве что пределов измерения стало больше. А вот необходимость крутить ручку устранилась.

Мегаомметр Ф4102

Удобнее стало производить измерения коэффициента абсорбции. Он характеризует увлажненность изоляции. Для этого показания мегаомметра снимают через 15 и 60 секунд после начала измерения и последнее показание делят на первое. У изоляции с нормальным содержанием влаги этот коэффициент равен 1,3-2,0. Если он больше – изоляция слишком сухая, равен 1 – количество влаги в ней велико.

Крутить ручку минуту для измерения коэффициента абсорбции непросто, да и снимать показания по нелинейной шкале трудно. Да еще при этом производить отсчет времени, поглядывая на секундомер. Некоторые полупроводниковые же мегаомметры включали в себя индикатор, подающий сигналы через 15 и 60 секунд. Это позволяло оператору сосредоточиться на показаниях стрелки прибора и правильно считать их.

Но у полупроводниковых мегаомметров не было главного преимущества современных приборов – цифровой шкалы. Они были громоздкими, требовали питания от сети или батареек.

Микропроцессорные мегаомметры

Следующим этапом развития мегаомметров стали микропроцессорные приборы. Все, что необходимо для работы с ними – дисплей и кнопки, которыми задается рабочее напряжение. Остальное прибор делает сам, выдавая в итоге на дисплей конечный результат, и даже – реальную величину напряжения, которую удалось выдать на измерительный выход. При снижении значения изоляции контролируемого объекта прибор не может выдать номинального напряжения на выходе. В некоторых случаях знать это нужно.

Для измерений коэффициента абсорбции в некоторых моделях приборов не только выдается визуальный и звуковой сигнал через 15 и 60 секунд. Они фиксируют сопротивление изоляции в это время и самостоятельно подсчитывают коэффициент.

Комбинированный прибор MIC 3

Микропроцессорные приборы компактнее своих предшественников. За счет этого появилась возможность совмещать в одном корпусе устройства различного назначения: для проверки сопротивления заземления, УЗО, петли фаза-ноль. Это удобно при выполнении комплексных измерений на объектах: работникам электролабораторий не нужно таскать с собой несколько приборов, достаточно одного.

electric-tolk.ru

Целью истинной методики является обеспечение высококачественного и неопасного проведения работ при производстве электролабораторией (дальше ЭЛ) испытаний (измерений).

Реальная методика составлена на основании:

—     ГОСТ Р 8.563-96 «Методики выполнения измерений».

—     Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001.

—   Документации заводов-изготовителей устройств, применяемых в проведении работ

Предназначение

Предназначение истинной методики – описание процедур по организации, выполнению и оформлению проводимых ЭЛ работ по измерению сопротивления изоляции.

Наименование и черта измеряемой величины

Измеряемая величина – сопротивление изоляции. Сопротивление изоляции неизменному току является главным показателем состояния изоляции и его измерение является неотъемлемой частью испытаний всех видов электрооборудования и электроцепей.

 Состав применяемых при измерении устройств

Сопротивление изоляции измеряется мегомметром. В текущее время более всераспространены мегомметры типа М-4100, ЭСО202/2Г, MIC-1000,  MIC-2500.

 Описание мегомметров

Мегомметр – прибор состоящий из источника напряжения (неизменного либо переменного генератора с выпрямителем тока) и измерительного механизма.

Мегомметры разделяются по номинальному рабочему напряжению до 1000 В и до 2500 В.

Мегомметры оснащаются гибкими медными проводами длиной до 2 – 3 м с сопротивлением изоляции более 100 МОм. Концы проводов присоединяемые к мегомметру обязаны иметь оконцеватели, а обратные – зажимы типа «крокодил» с изолированными ручками.

 Порядок проведения измерений

Порядок проведения измерений мегомметрами типа М-4100 и ЭСО202/2Г.

До проведения измерений нужно:

1) До проведения измерения мегомметр должен быть подвергнут контрольной проверке, которая заключается в проверке показаний прибора при разомкнутых проводах (стрелка прибора должна находиться у отметки бесконечность – ?) и замкнутых проводах (стрелка прибора должна находиться на отметке – 0).

2) Убедиться, что на испытуемом кабеле нет напряжения (инспектировать отсутствие напряжения нужно испытанным указателем напряжения, исправность которого должна быть испытана на заранее находящихся под напряжением частях электроустановки – п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001).

2) Заземлить токоведущие жилы испытываемого кабеля (заземление с токоведущих частей можно снимать только после подключения мегомметра).

Подключаемые провода мегомметров обязаны иметь зажимы с изолированными ручками, в электроустановках выше 1000 В, не считая того, следует воспользоваться диэлектрическими перчатками.

При работе с мегомметром дотрагиваться к токоведущим частям, к которым он присоединен, не разрешается.

Обычно, определяют сопротивление изоляции каждой фазы кабеля относительно других заземленных фаз. Если измерения по этому сокращенному варианту дадут неудовлетворительный итог, то нужно измерить сопротивление изоляции меж каждыми 2-мя фазами и каждой фазой относительно земли.

При измерениях на кабелях выше 1000 В (когда результаты измерений могут быть искажены точками утечек по поверхности изоляции) на изоляцию объекта измерения (концевую воронку и т.д.) накладывают электрод (экранные кольца), присоединенный к зажиму «Э» (экран).

При измерениях сопротивления изоляции кабелей на напряжение до 1000 В с нулевыми жилами нужно держать в голове последующее:

— нулевые рабочие и защитные проводники обязаны иметь изоляцию, равную изоляции фазных проводников;

— как со стороны источника питания, так и со стороны приемника нулевые проводники должны быть отсоединены от заземленных частей.

Измерение (снятие показаний) следует создавать при устойчивом положении стрелки прибора. Для этого необходимо крутить ручку прибора со скоростью 120 об./мин.

Сопротивление изоляции определяется показанием стрелки прибора через 15 сек. и 60 сек после начала вращения. Если определения коэффициента абсорбции кабеля не требуется, отсчет показаний делается после успокоения стрелки, но не ранее 60 сек от начала вращения.

При некорректно избранном пределе измерений, нужно:

— снять заряд с испытуемой фазы, наложив заземление;

— переключить предел и повторить измерение на новеньком пределе.

При наложении и снятии заземления нужно воспользоваться диэлектрическими перчатками

По окончании измерений, до того как отсоединять концы прибора, нужно снять скопленный заряд методом наложения заземления.

Измерение сопротивления изоляции сетей освещения проводится мегомметром на напряжение 1000 В и содержит в себе:

а)       Измерение сопротивления изоляции магистральных линий – от сборок 0,4кВ (ГРЩ, ВРУ) до автоматических выключателей распределительных щитов (ЩЭ) либо групповых (зависимо от схемы);

б)      Измерение сопротивления изоляции от распределительных (этажных) щитов до групповых щитков местного управления (квартирных).

в)       Измерение сопротивления изоляции сети освещения от автоматических выключателей (предохранителей) местных, групповых щитков управлени(ЩК) до осветительных приборов (включая изоляцию самого осветительного прибора). При всем этом в сетях освещения в светильниках с лампами накаливания измерение сопротивления изоляции делается при снятом напряжении, включенных выключателях, снятых предохранителях (либо отключенных выключателях), отсоединенных нулевых рабочих и защитныхпроводах,отключенныхэлектроприемниках и вывернутых электролампах. В сетях освещения с газоразрядными лампами создавать измерение можно как с установленными лампами, так и без их, но со снятыми стартерами.

г)       Величина сопротивления изоляции на каждом участке сети освещения,начиная от автомата (предохранителя) щита и включая проводку осветительного прибора должна быть более 0,5 МОм.

 Обработка и оформление результатов измерений

Данные по использованным в процессе измерительных работ устройствам, также результаты измерений заносятся в протоколы.

Требования к неопасному проведению работ

В согласовании с главой 12 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001» работники ЭЛ (как работники организациий, направляемые для выполнения работ в действующих, строящихся, на техническом уровне перевооружаемых, реконструируемых электроустановках и не состоящие в штате организаций – хозяев электроустановки) относятся к командированнному персоналу.

Командируемые работники обязаны иметь удостоверения установленной формы о проверке познаний норм и правил работы в электроустановках с отметкой о группе, присвоенной комиссией командирующей организации. Командирующая организация несет ответственность за соответствие присвоенных командированным работникам групп, также за соблюдением персоналом нормативных документов по неопасному выполнению работ.

Организация работ командировочного персонала предугадывает прохождение последующих процедур выполняемых до начала работ:

— уведомление организации-владельца электроустановки письмом о цели командировки, также составе и квалификации  командировочного персонала ЭЛ;

— определение и предоставление организацией-владельцем командированным работникам права работы в действующих электроустановках (в качестве выдающих наряд, ответственных управляющих и производителей работ, членов бригады);

— проведение с командированным персоналом по его прибытии вводного и первичного инструктажей по электробезопасности;

— ознакомление командированного персонала с электронной схемой и особенностями электроустановки, в какой ему предстоит работать (при этом работник которому предоставляется право исполнять обязанности производителя работ должен пройти инструктаж по схеме электроснабжения электроустановки);

— проведение работниками организации-владельца подготовки рабочего места и допуск командированного персонала к работам.

Организация, в электроустановках которой выполняются работы командированным персоналом, несет ответственность за выполнение предусмотренных мер безопасности и допуск к работам.

Работы производятся на основании наряда-допуска, распоряжения либо в порядке текущей эксплуатации в согласовании с требованиями главы 5 «Межотраслевых правил по охране труда (правил безопасности) при эксплуатации электроустановок. ПОТ Р М-016-2001». Не считая того при проведении испытаний и измерений следует :

1.    Управляться указаниями паспортов (инструкций по эксплуатации) применяемых устройств и инструкций по технике безопасности (действующими на предприятии, где производятся измерения), также дополнительными требованиями по безопасности, определенными в нарядах-допусках, распоряжениях, инструктажах.

2.    Инспектировать отсутствие напряжения (инспектировать отсутствие напряжения нужно испытанным указателем напряжения, исправность которого должна быть испытана на заранее находящихся под напряжением частях электроустановки – п. 3.3.1 «Межотраслевых правил по охране труда» ПОТ Р М-016-2001). Отсутствие напряжения следует инспектировать как меж всеми фазами, так и меж фазой и землей. При этом, в электроустановках с системой TN-C следует сделать более 6 замеров, а в электроустановках с системой TN-S -десяти замеров.

3.    Создавать подключение и отключение всех измерительных устройств при снятом напряжении.

4.    Обеспечивать применение защитных средств и инструмента с изолирующими ручками, испытанных согласно «Инструкции по применению и испытанию средств защиты, применяемых в электроустановках»,  утвержденной приказом Минэнерго Рф от 30.06.2003 г. за № 261.

Производящая работы бригада должна состоять более чем из 2-ух человек, в том числе производитель работ с группой по электробезопасности не ниже IV и член бригады с группой по электробезопасности не ниже Ш. При проведении измерений воспрещается приближаться к токоведущим частям на расстояния наименее обозначенных в таблице 1.

elektrica.info

Обследование электропроводки

В каждой организации, в ведении которой находится электроустановки, должен быть ответственный за электрохозяйство. В его обязанности входит составление планово-предупредительных работ по ремонту этого оборудования, а также проведения периодических испытаний и измерений, обследования электропроводки. Периодичность таких измерений, как правило, составляется на основе требований ПТЭЭП. Например, по поводу измерения сопротивления изоляции там сказано, что испытания стоит проводить 1 раз в 3 года.

Что такое измерение сопротивления изоляции

Это измерение специальным прибором (мегаомметром) сопротивления между двумя точками электроустановки, которое характеризует ток утечки между этими точками при подаче постоянного напряжения. Результатом измерения является значение, которое выражается в МОм (мегаОмы). Измерение проводится прибором – мегаомметром, принцип действия которого состоит в измерении тока утечки, возникающего под действием на электроустановку постоянного пульсирующего напряжения. Современные мегаомметры выдают различные уровни напряжения для испытания разного оборудования.

Допустимое сопротивление для различного оборудования

Основным руководящим документом является ПТЭЭП, в котором приводится периодичность испытаний, величина испытательного напряжения и норма значения сопротивления для каждого вида электрооборудования (ПТЭЭП приложение 3.1, таблица 37). Ниже приводится выдержка из документа.

Не стоит путать сопротивление электрических кабелей с сопротивлением коаксиального кабеля и волновым сопротивлением кабеля, т.к. это относится к радиотехнике и там действуют другие принципы подхода к допустимым значениям.

Вопрос электробезопасности

Измерение сопротивления изоляции проводится с целью обезопасить человека от поражения током и в целях пожарной безопасности. Отсюда минимальное значение сопротивления – 500 кОм. Оно взято из простого расчета:

U – фазное напряжение электроустановки;

RИЗ – сопротивление изоляции электрооборудования;

RЧ – сопротивление тела человека, для расчетов по электробезопасности принимается RЧ =1000 Ом.

Подставляя известные значения (U=220 В, RИЗ=500 кОм), получается ток утечки 0,43 мА. Порог ощутимого тока 0,5 мА. Таким образом, 0,5 МОм – это минимальное сопротивление изоляции, при котором среднестатистический человек не будет чувствовать тока утечки.

При измерении мегаомметром также стоит обратить внимание на безопасность, т.к. аппарат выдает до 2500 В на своих щупах, оно может быть смертельным для человека. Поэтому проводить измерения может только специально обученный персонал. Подключение мегаомметра и измерения должны проводиться на отключенной от электрической сети электроустановке. Необходимо провести проверку электропроводки на отсутствия напряжение. Если проходят испытания для кабеля, следует обезопасить это место от случайного прикосновения к неизолированным частям кабеля на противоположном конце от места испытания.

Методика измерения сопротивления изоляции кабеля

Сначала персонал должен определить отсутствие напряжения на кабеле с помощью указателя напряжения. На противоположном конце жилы кабеля должны быть разведены на достаточное расстояние, чтобы не было случайного замыкания. Затем вывешиваются запрещающие знаки в зоне проведения испытания. Также необходимо провести визуальный осмотр кабеля, если это возможно, чтобы определить, есть ли места перегрева или оголенные участки. После этого можно приступать к измерениям. Необходимо измерить сопротивление изоляции между фазами (А-В, А-С, В-С), между фазами и нулем (А-N. B-N, C-N), между нулем и заземляющим проводом. Время каждого измерения – 1 минута. После каждого испытания необходимо заземлять жилу кабеля, хотя современные мегаомметры могут проводить самостоятельную разрядку. Полученные результаты записываются в протокол. Стоит помнить, что, если полученные данные делаются для какой-то проверяющей комиссии, протокол имеет право делать только специализированная электролаборатория.

Приборы для проведения измерений

Для проведения испытаний именно постоянным пульсирующим напряжением наилучшим выбором является мегаомметр. В приборах старых конструкций для получения напряжений использовался встроенный механический генератор, работающий по принципу динамо-машины. Чтобы выдать необходимое напряжение, надо было усиленно крутить ручку. В настоящее время мегаомметры выполняются в виде электронных устройств, работающих от батарей, они имеют компактный размер и удобное программное обеспечение. Современные мегаомметры имеют память, где хранятся несколько испытаний. При каждом измерении проводится автоматический подсчет коэффициента абсорбции. Его значение определяется отношением тока поляризации к току утечки через диэлектрик — изоляцию обмотки. При влажной изоляции коэффициент абсорбции близок к 1. При сухой изоляции R60 (сопротивление изоляции через 60 сек после начала испытания) на 30-50 % больше, чем R15 (через 15 сек).

Итог

Измерение сопротивления изоляции кабеля – ответственная процедура, от правильности выполнения которой, зависит безопасность, как людей, так и оборудования. Поэтому не стоит пренебрегать этой несложной, но полезной операции. Это поможет сэкономить немало средств.

amperof.ru

Зачем нужен замер сопротивления изоляции

Время от времени изоляционные свойства кабелей претерпевают изменения из-за воздействия на них внешних факторов. Соответственно, работа оборудования в электроустановках нарушается.

Причины снижения уровня изоляции:

  • Локальные нагревы соединений контактов – тепло, нагревая материал, снижает свойства его изоляции;
  • Оседание пыли, грязи на корпусах электрических приборов;
  • Перегрев механизмов, обугливание корпусов после замыканий;
  • Большая влажность – конденсат, повреждения труб, затопления подвальных помещений приводит к появлению влаги на корпусах электрооборудования (кстати, это еще и опасно, так как вода, попадая на грязь и пыль, растворяет эти вещества, становясь проводником тока, вследствие чего может произойти замыкание);
  • Последствия монтажных работ, вследствие которых была нарушена проводка;
  • Неправильная эксплуатация электроприборов, инструментов и оборудования.

Учитывая все эти явления, проверка изоляции проводов – необходимое мероприятие, позволяющее выявить неисправности и предотвратить аварийные ситуации.

Мегаомметр: принцип работы и устройство прибора

Что такое мегаомметр, почему он так называется и каково назначение его пользования? Если расшифровать это слово, мы увидим, что его часть «мега» означает величину измерения, «ом» – единицы электросопротивления, а «метр» – измерять. Таким образом, становится ясно, что мегаометр – это прибор, каким производится испытание электрического сопротивления.

Иногда из этого слова выбрасывается буква «а» для лучшего созвучия звуков слова, но в этом случае искажается заложенный в названии смысл. Кстати, многие электрики называют этот прибор «мегером», а измерять сопротивление – сленговым словом «мегерить».

Внутреннее устройство мегаомметра:

  • Генератор тока;
  • Измеряющая головка;
  • Переключатель диапазона измерения;
  • Ограничивающие ток резисторы.

Перед тем как использовать мегаомметр, лучше сперва ознакомиться с принципом его работы и устройством прибора

Чтобы выполнить замер, устройство поставляет в проверяемую цепь ток, причем он должен быть постоянным. Переменный тут не годится, так как линии кабелей имеют именно емкостные сопротивления, а конденсаторы умеют проводить переменный ток, что приведет к искажению итогов измерений.

Виды мегаомметров, исходя из напряжения:

  • 100 вольт – нужен для проверки изоляции низковольтных проводов;
  • 500 вольт – для электромашин малой мощности;
  • 1000 вольт – для бытовых осветительных приборов и розеточных модулей;
  • 2500 вольт – для высоковольтных аппаратов и воздушных линий.

Наиболее популярными считаются модели приборов: ЭС0202/2Г, М1101М, М4100, Ф4101, ЭСО 202/2Г, электронный ut512UNI-T.

Мегаоометром можно также прозвонить электродвигатель для проверки целостности его обмоток. Но в основном прозвонка двигателя или какого-либо другого оборудования осуществляется другим прибором – мультиметром.

Впрочем, какой прибор для чего подойдет можно прочитать в технической документации электрооборудования.

Выбор пределов замеров у мегомметров происходит на автомате, а напряжение для испытания выбирается переключателем или в меню прибора.

Кстати, некоторые мегомметры показывают результат уже через несколько секунд, в то время как истинным итогом считается сопротивление, показанное через 60 сек после начала испытания. Более того, у них нет возможности генерировать напряжение в течение длительного периода. Это тоже плохо, так как за короткое время можно не увидеть все дефекты проводки.

Работа с мегаомметром и правила безопасности

Измерить мегаомметром характеристики электрического оборудования для определения возможности его безопасной эксплуатации совсем несложно, но так как на выводах этого инструмента находится опасное напряжение, обязательно должна соблюдаться техника безопасности.

Какие меры безопасности должны предприниматься:

  • Пользоваться омметром могут только специально обученные люди;
  • Измеритель должен проходить ежегодную поверку у метрологов;
  • Заключение о годности проводки к дальнейшему использованию может выдавать только лишь электротехническая лаборатория, имеющая лицензию на такой вид деятельности;
  • Перед тем как начать работать, прибор следует проверить на целостность изоляции проводов, чтобы исключить риск электротравм;
  • Для защиты от напряжения используются специальные щупы с усиленной изоляцией – на их концах есть выделенная зона, к которой нельзя прикасаться открытым телом, иначе можно попасть под напряжение;
  • Во время измерений подключение к схеме происходит с использованием хорошо изолированных зажимов вроде «крокодила» – применять другие инструменты запрещено.

Кстати, следует иметь в виду, что измерение сопротивления своими руками возможно, но, согласно правилам, юридической силы оно не имеет. Поэтому если вам нужны протоколы – нужно вызвать специалистов. Для пожарной службы и энергонадзора еще могут понадобиться документы регистрации лаборатории, проводившей испытания.

В больницах, детских садиках, школах и иных общественных учреждениях сопротивление проводки должно выполняться регулярно, чтобы исключить аварийные ситуации.

Перед началом использования на мегаомметре устанавливают нужное напряжение, а затем проверяют исправность цепи и самого агрегата.

Методика проверки такова:

  • Вначале щупы коротко соединяются, и производится замер – прибор покажет ноль;
  • После чего щупы рассоединяются, и снова делается замер – будет бесконечность.

Это нужно делать, чтобы вовремя обнаружить сбитые настройки, порванные кабеля или поломку самого омметра.

Правила измерения предполагают замеры для кабельных линий между их жилами, учитывая все варианты:

  • Если кабель трехжильный – нужно три измерения;
  • Если четыре жилы – то шесть;
  • Если пять – десять.

Сопротивление изоляции и виды проводимых работ

Чтобы правильно выбрать мегаомметр, следует исходить из величины выходящего напряжения.

Есть две основных вида проверки:

  • Испытание изоляции;
  • Измерение сопротивления слоя диэлектрики.

Методы, описанные выше, отличаются временем проверки и величиной напряжения.

В первом случае на участок подается повышенное напряжение, чтобы создать экстремальную ситуацию. Время испытательного процесса длится долго. Такой способ позволяет выявить все неисправности изоляции, а также предупредить их появление в процессе использования.

Во втором случае напряжение подбирается на порядок меньше, а время замера варьируется до окончания заряда проверяемого участка.

Иногда случается так, что мегаомметра для проверяющих целей мало – в таком случае можно прибегать к помощи других установок и электроинструмента.

Инструкция: как пользоваться мегаомметром

Как же выполнить замер сопротивления изоляции, к примеру, силового щита? Этот процесс делится на подготовку, выполнение измерений и заключительную часть.

Порядок действия во время подготовки:

  • Подготавливается схема электрической установки, и предусматриваются меры, предупреждающие ее поломку;
  • Подготавливаются защитные средства, а также измеряющий напряжение агрегат;
  • Участок, подлежащий проверке, выводится из работы.

О том как пользоваться мегаомметром, можно узнать в интернете или изучая инструкцию к прибору

Во время проведения измерений нужно правильно пользоваться мегаомметром. Перед самой работой нужно убедиться, что прибор исправен: к нему подключают измерительные провода и соединяют их. А затем дают напряжение от трансформатора и записывают показания.

Измеряющий прибор должен проверить цепь и показать ноль. Далее концы разводятся в разные стороны и снова выполняют замер. Шкала прибора должна показать бесконечность.

Сопоставляя эти показания, делаются выводы о готовности мегаомметра к работе.

Руководство по применению аппарата:

  • Вначале подсоединяется заземление к контуру земли;
  • Далее идет проверка отсутствия напряжения на нужном участке;
  • Затем устанавливается заземление на время работы агрегата;
  • Собирается схема измерения прибора;
  • Заземление убирается;
  • Напряжение подается на схему до начала выравнивания заряда;
  • Начинается отсчет, после которого напряжение убирается;
  • Для снятия заряда накладывается заземление;
  • Отключается соединительный провод от схемы;
  • Убирается заземление.

Сопротивление измеряется при наибольшей величине мегаомов. Если же величины не хватает – переходят на способы с более точными диапазонами.

Сопротивление при горизонтальном корпусе замеряют, используя стрелочный мегаомметр. Если это нарушить – появится дополнительная погрешность. Кстати, современный цифровой прибор, собранный по новым технологиям, не боится такого явления.

Остается написать и составить протокол, в котором есть описание условий и номера используемых агрегатов.

На заключительном этапе все цепочки восстанавливаются, защитные приспособления снимаются, а схема снова вводится в работу.

6watt.ru

Сопротивление изоляции: как и для чего измерять

Итак, мегаомметр – средство измерений, которое проводит замеры с использованием повышенного выпряиленного напряжения, исключает необходимость подключения к сети, а также имеет несколько фиксированных значений выходного напряжения на зажимах, что дает возможность проводить измерения по разным нормативным требованиям. Мегаомметр применяется как прибор для измерения сопротивления изоляции в различных областях, например в производстве: как правило, требуются замеры обмоток электрических машин и трансформаторов, сопротивления изоляции проводов и кабелей, разъемов, поверхностных и объёмных сопротивлений изоляционных материалов.

Мегаомметр как прибор для измерения сопротивления изоляции довольно редко имеется в организациях, непрофильных электроизмерениям, несмотря на его доступность и широкую распространенность: низкие напряжения измеряются омметром, и еще один прибор, как правило, не приобретают – тем более, что для измерений требуется не только мегаомметр, но и допуск соответствующего уровня. Почему такое важное значение придается изоляции, измерению ее сопротивления, испытаниям?

В силовых кабелях и проводах изоляция разделяет токоведущие жилы, в ячейках распредустройств — отделяет токоведущие установки от заземления, создает систему безопасности при работе с электроустановками и силовыми линиями. Если значение сопротивления изоляции ниже нормируемого, то возможно наступление сразу нескольких последствий: это пожарная опасность – от задымления ядовитыми веществами от горящей изоляции до постоянных утечек тока. И первое, и последнее создает серьезную угрозу жизни и безопасности обслуживающего персонала электрооборудования. При этом измерение сопротивления изоляции, особенно в организациях, занимающихся обслуживанием потребителей (обывателей, покупателей, клиентов), которые, в отличие от персонала, могут не иметь даже минимальной грамотности в сфере электробезопасности – единственная возможность избежать несчастных случаев.

Повреждения изоляции могут возникать по разным причинам. Это заломы и повреждения при транспортировке, перетирание из-за неправильной установки, деградация изоляции вследствие времени, агрессивной среды, температурных воздействий, перепадов напряжения, по каким-либо иным причинам. С помощью мегаомметра – прибора для измерения сопротивления изоляции – при проведении измерений сопротивления изоляции силами специалистов электролаборатории — можно выявить место утечки и впоследствии ликвидировать нарушения в кратчайшие сроки. Нельзя также исключать человеческий фактор – ошибочные действия персонала также могут повредить изоляцию, причем повреждения могут быть системными, поэтому измерение сопротивления изоляции требуется проводить согласно графику измерительных работ и испытаний, утвержденных в нормативных документах: ПУЭ, ПТЭЭП ОиНИЭ, ГОСТ. Измерение для различных видов электрооборудования проводят при значениях постоянного (выпрямленного)  напряжения U=250,500,1000,2500,5000В. Значения измеряемого напряжения указываются в методиках, пособиях, руководствах на оборудование.

Специфика измерения сопротивления изоляции

Первым этапом проверки изоляции электропроводки является визуальный осмотр, во время которого можно выявить серьезные нарушения: оплавление изоляции, разрывы, заломы, отсутствие частей изолирующего покрытия, трещины, съеживание или провисание. Точно так же перед тем, как использовать прибор для измерения сопротивления изоляции, необходимо проинспектировать места стыка кабелей, присоединение их к шинам, контакты распределительной коробки, клеммы и пр. Несмотря на то, что, в отличие от показаний мегаомметра при измерениях, визуальный осмотр не дает точных численных значений , его результаты также заносятся в протокол и подшиваются к акту.

Затем производится полное отключение оборудования: силовых трансформаторов, кабельных линий , в электроустановках до 1000В остаточное напряжение снимается, выкручиваются лампы накаливания, выключатели переводятся в режим включения. Это делается для того, чтобы при измерении сопротивления изоляции контуры были замкнуты, но при этом не произошло перегорание «слабых звеньев», не рассчитанных на перепады напряжения.

При использовании мегаомметра — прибора для проверки и измерения сопротивления изоляции – проводятся следующие работы:

  1. измерение сопротивления между токоведущими частями электроустановок и заземляющими элементами;
  2. измерение сопротивления между обмотками первичного и вторичного напряжения в силовых и измерительных трансформаторах;
  3. измерение сопротивления изоляции между нейтралью и землей, между фазными проводниками и землей, между фазой и нулем, между фазными проводниками.

В любом случае, проверка должна выявить либо полное соответствие ПУЭ и ПТЭЭП, либо некоторое несоответствие, которое измеряется дополнительно – если это необходимо — фиксируется и заносится в акт проверки. Проверочное напряжение мегаомметра может быть разным, поэтому измерения классифицируются еще и для разного типа оборудования:

  1. напряжение 1 кВ используется при проверке проводов, кабелей  до 1000В в соответствии с требованиями НД.  
  2. напряжение 2,5 кВ используется для магистральных кабельных линий до 1000В и оборудования выше 1000В.

Отметим, что сотрудникам электротехнической лаборатории, проводящим проверку, необходимо иметь достаточный уровень квалификации: для работ с мегаомметром производителю работ IV группу по электробезопасности, членам бригады —  III  группу по электробезопасности, при этом в бригаде должно быть не менее двух человек.

Правила эксплуатации мегаоомметра

Правила эксплуатации мегаомметра – прибора для проверки и измерения сопротивления изоляции описаны в Руководстве по эксплуатации средства измерений.

«5.4.1. Измерения мегаомметром в процессе эксплуатации разрешается выполнять обученным работникам из числа электротехнического персонала. В электроустановках напряжением выше 1000 В измерения производятся по наряду, в электроустановках напряжением до 1000 В — по распоряжению. В тех случаях, когда измерения мегаомметром входят в содержание работ, оговаривать эти измерения в наряде или распоряжении не требуется.

5.4.2. Измерение сопротивления изоляции мегаомметром должно осуществляться на отключенных токоведущих частях, с которых снят заряд путем предварительного их заземления. Заземление с токоведущих частей следует снимать только после подключения мегаомметра.

5.4.3. При измерении мегаомметром сопротивления изоляции токоведущих частей соединительные провода следует присоединять к ним с помощью изолирующих держателей (штанг). В электроустановках напряжением выше 1000 В, кроме того, следует пользоваться диэлектрическими перчатками.

5.4.4. При работе с мегаомметром прикасаться к токоведущим частям, к которым он присоединен, не разрешается. После окончания работы следует снять с токоведущих частей остаточный заряд путем их кратковременного заземления».

При работе с мегаомметром нашими специалистами, все правила по предварительной подготовке измерений, безопасности труда, проведению измерений и фиксации их результатов соблюдаются неукоснительно, что обеспечивает высокое качество выполнения исследований. Сотрудники электролаборатории имеют необходимые допуски, а организация –разрешительные документы на виды деятельности. Работы проводятся на территории Северо-Западного Федерального Округа. 

Если проверка сопротивления изоляции выявила несоответствие показаний требованиям нормативных документов (например ПТЭЭП или  ПУЭ), то данное испытуемое оборудование бракуют, о чем делают запись в протоколе и ведомости дефектов.

Измерение сопротивления изоляции кабелей, имеющих фазные жилы, сечение которых – 16мм2 или меньше, выполняется при помощи мегаомметра (проверочное напряжение — 1000В).

Измерение сопротивления изоляции кабелей и проводов, фазные жилы которых имеют сечение больше 16мм2, осуществляется мегаомметром (проверочное напряжение — 2500В).

Удовлетворительным принято считать сопротивление изоляции линий напряжением до 1000В при значении между любыми её проводами не больше 0,5МОм.

Для силовых кабельных линий значение  сопротивления не нормируется.

Для оборудования электроустановок до и выше 1000В нормируемые значения сопротивления изоляции используют из НД : ПУЭ , 7-е изд., гл.1.8., ПТЭЭП, ОиНИЭ, паспорта заводов –производителей оборуования.

Работы выполняются специалистами имеющими III гр. по ЭБ для членов бригады и IV гр. по ЭБ до и выше 1000В для производителя работ.

www.gorod812.com


Смотрите также